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This paper addresses the optimal linear estimation problem for a class of networked descriptor systems 
with multiple packet dropouts, measurement multiplicative noises and finite-step correlated process 
and measurement noises. Based on a fast–slow subsystem decomposition approach (FSD), the descriptor 
system is transformed into two reduced-order linear nonsingular subsystems with finite-step correlated 
noises. Optimal linear estimators including filter, predictor and smoother with corresponding estimation 
error covariance matrices for the states and noises of new systems are developed via the innovation 
analysis approach. Then, the optimal linear estimators are obtained for the original descriptor system. An 
example shows the effectiveness of the proposed algorithms.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Descriptor systems or singular systems often appear in robotics, 
economics, electrical circuit networks, power systems, aerospace 
engineering, biomedical sciences, chemical industry and many 
other practical application fields. They have more extensive de-
scription forms than non-singular systems. Therefore, the estima-
tion and control problems of descriptor systems have been paid 
great attention to in the past few decades [1–6].

There are a great number of approaches to deal with the 
state estimation problems of descriptor systems. For example, the 
reduced-order Kalman filters have been investigated in [7–13]
based on singular value decomposition (SVD) and fast–slow sub-
system decomposition (FSD) [1,5]. On the basis of the modern 
time-series analysis method, the time-domain Wiener filters for 
descriptor systems are presented in a unified framework [13]. In 
[14], the full-order state estimator for lower dimension descrip-
tor systems has been studied. In [15], the original descriptor sys-
tem is transformed into the equivalent non-singular systems with 
unknown inputs by using full-row rank decomposition and the 
optimal state estimator is achieved. When the noise statistics infor-
mation of descriptor systems is unknown, the self-tuning reduced-
order and full-order filters are given by identifying the parameters 
of an ARMA innovation model [16]. In [17], a robust Kalman filter 
is proposed for descriptor systems with uncertainties. By taking 
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the data quantization into account, the event-triggered controller 
of networked singular system is designed in [18].

Traditional Kalman filtering algorithm assumes that both the 
process noise and measurement noise are uncorrelated or corre-
lated white noises at the same moment. In practical applications, 
finite-step correlated noises are often caused due to the continuous 
system discretization [19], the model transformation of the net-
worked systems with random delays [20], the same noise source of 
environmental pollution and other reasons in the systems. The es-
timation problem with finite-step correlated noises is always com-
plex and challenging. The Kalman-type filters with finite-step cor-
related process and/or measurement noises have been discussed 
in [19,21]. However, they are suboptimal because the filters are 
fixed as Kalman-like forms. In [22,23], the distributed Kalman fu-
sion estimators are studied for a class of uncertain systems with 
one-step auto-correlated and/or two-step cross-correlated noises. 
Meanwhile, the networked control systems (NCSs) have also re-
ceived much attention due to the advantages of low cost, great 
mobility, simple installation and implementation. In NCSs, random 
time delays and packet dropouts or missing measurements often 
appear in data transmission [24–31]. Moreover, networked systems 
with multiple delays and packet dropouts can be transformed into 
those with finite-step correlated noises [20] or random parame-
terized systems [25–31]. Nowadays, it has been a hot research 
area to take into account networked uncertainties and correlated 
noises simultaniously [32–39]. The optimal and suboptimal filters 
for networked systems with multiple packet dropouts and corre-
lated noises are designed in [32–35]. However, the above litera-
tures are mainly focused on non-descriptor systems. The corre-
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sponding results for descriptor systems are relatively few. In recent 
study [36], Feng et al. have presented the recursive estimation for 
descriptor systems with multiple packet dropouts and correlated 
noises. The centralized and distributed fusion state estimators are 
also designed for the corresponding multi-sensor systems with 
multiplicative noises, correlated additive noises and networked un-
certainties in [37–39]. However, one-step auto- and/or two cross-
correlated noises are only concerned in [36–40], but multi-step 
auto- and cross-correlated noises are not taken into account. More-
over, main results in most literature focus on filter design, but 
multi-step predictor and smoother are seldom reported.

Motivated by the above discussion, to the best of the authors’ 
knowledge, the optimal estimation problem has not been solved 
for the descriptor systems with multiple packet dropouts, multi-
plicative noises and finite-step correlated noises. It has wide appli-
cations in practice such as circuits, networks and chemical indus-
try. By using FSD and innovation analysis approach [41], we will 
derive the optimal linear estimators including filter, predictor and 
smoother with the estimation error covariance matrices for the 
state and noises of descriptor systems. The proposed estimation 
algorithms generalize the existing results in some present litera-
ture. Compared with the existing results, the main contributions of 
this paper are emphasized as follows: 1) both finite-step auto- and 
cross-correlated noises are taken into account in descriptor sys-
tems; 2) optimal linear estimators including filter, predictor and 
smoother with corresponding estimation error covariance matrices 
are presented for descriptor systems; 3) the system model com-
prehensively considers some issues of multiple packet dropouts, 
multiplicative noises and correlated noises.

The rest of the paper is organized as follows. In Section 2, the 
problems studied are stated. In Section 3, the networked descriptor 
system is transformed into two reduced-order nonsingular systems 
and the statistical properties of the systems are analyzed. In Sec-
tion 4, the optimal linear state and noise estimators are developed. 
In Section 5, an example is presented to illustrate the effectiveness 
of the algorithms. Some conclusions are drawn in Section 6 and 
Appendices provide the mathematical details.

Notations. Throughout this paper, Rn and Rn×m denote the 
n-dimensional Euclidean space and the set of all real n × m ma-
trices, respectively. C is the set of complex numbers. E(x) is the 
expectation of random variable x. P T is the transpose of matrix P . 
det(A) is the determinant of matrix A. diag{·} denotes the block 
diagonal matrix. ⊥ denotes orthogonality. Pr ob{∗} denotes the oc-
curring probability of event ∗. In and 0 represent the n ×n identity 
matrix and zero matrix with appropriate dimensions, respectively. 
det(A) is the determinant of matrix A. δt,k is the Kronecker delta 
function. In addition, L(y(t), y(t − 1), · · · , y(0)) stands for the lin-
ear space spanned by (y(t), y(t − 1), · · · , y(0)). x̂( j|t) means the 
linear minimum variance estimate of the vector x( j) based on 
the L(y(t), y(t − 1), · · · , y(0)). x̃( j|t) is the estimation error, i.e., 
x̃( j|t) = x( j) − x̂( j|t).

2. Problem formulation

Consider the following networked descriptor control system 
with multiple packet dropouts and measurement multiplicative 
noises

Mx(t + 1) = Φx(t) + Bue(t) + Γ w(t)

z(t) =
(

H +
na∑

i=1

ζi(t)H̄i

)
x(t) + v(t) (1)

y(t) = ξ(t)z(t) + (
1 − ξ(t)

)
y(t − 1)

where t is the discrete time, x(t) ∈ Rn is the state, ue(t) ∈ Ru is 
the known control input, z(t) ∈ Rm is the measurement output to 
be transmitted to the estimator, and y(t) ∈ Rm is the measure-
ment received by the estimator. The multiplicative noise ζi(t) ∈ R , 
i = 1, . . . , na are the scalar white noises that describe the uncer-
tainties of measurement matrix parameters. Bernoulli distributed 
stochastic variable ξ(t) is uncorrelated with other noise signals, 
with the probabilities Pr ob{ξ(t) = 1} = α and Pr ob{ξ(t) = 0} =
1 − α. The third equation in (1) can describe the phenomena of 
multiple packet dropouts in networked systems. Moreover, this 
model has been widely used in recent many references [31–33]. 
Clearly, it follows that y(t) = z(t) if ξ(t) = 1 (i.e., received on time); 
on the contrary, y(t) = y(t − 1) if ξ(t) = 0 (i.e., the measured data 
z(t) is lost and the latest measurement y(t − 1) received at time 
instant t − 1 is used as a compensator). So, α is called receiving 
rate on time and 1 − α packet loss rate (PLR). Φ, B , Γ , H and 
H̄i, i = 1, . . . , na are known constant matrices with appropriate di-
mensions.

Assumption 1. M is a singular square matrix, i.e., det(M) = 0.

Assumption 2. The system is regular. i.e., for ∀z0 ∈ C , det(z0M −
Φ) �= 0.

Assumption 3. w(t) ∈ R p and v(t) ∈ Rm are β0-step (β0 ≥ 1) cor-
related noises with zero mean and

E
[

w(t)wT(k)
] = Q w(t,k),

E
[

w(t)vT(k)
] = S̄(t,k),

E
[
v(t)vT(k)

] = Q v(t,k)

where Q w(t, t) = Q w(t), ̄S(t, t) = S̄(t) and Q v(t, t) = Q v(t). For 
k > t + β0 or k < t − β0, we set

Q w(t,k) = 0, S̄(t,k) = 0, Q v(t,k) = 0.

Assumption 4. The multiplicative noise ζi(t) ∈ R is the scalar white 
noise with zero mean and is uncorrelated with other noise signals. 
ζi(t) has the following statistical properties:

E
[
ζi(t)ζ

T
j (k)

] = Q ζi (t)δt,kδi, j

Our aim is to find the linear minimum variance recursive state 
estimators x̂ (t|t + N), where for N = 0, N > 0 or N < 0, it is called 
descriptor state filter, smoother or predictor, respectively.

Remark 1. From the distribution of ξ(t), it can be easily obtained 
that

E
[
ξ(t)

] = α, E
[
ξ2(t)

] = α, E
[(

ξ(t) − α
)2] = σ 2,

E
[
ξ(t)

(
ξ(t) − α

)] = σ 2, E
[
ξ(k)ξ(t)

] = α2, t �= k,

where the variance σ 2 = α(1 − α).
Let J (t) = ξ(t) − α, then the standardized stochastic variable 

J (t) is a white noise with zero mean and variance σ 2.

3. System transformation and statistical property analysis

3.1. System transformation

Using Assumption 2, there exist non-singular matrices P and Q
[1, 5] such that

P M Q = diag{Ir,Ω}, PΦ Q = diag{Φ1, In−r},
where Ω ∈ R(n−r)×(n−r) is a nilpotent matrix with the nilpotent 
index γ (γ ≥ 1), and then we define
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