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This paper presents an online optimal midcourse trajectory modification algorithm for the hypersonic 
interceptions based on the neighboring optimal control theory, which takes the current states deviations 
and the revised terminal constraints as inputs and generates the optimal control modifications. Firstly, 
the midcourse guidance for hypersonic interception is introduced as an optimal control problem, which 
is solved with the well-developed Gauss Pseudospectral Method (GPM) to generate a nominal trajectory 
that satisfies the first order optimality conditions. Secondly, the Neighboring Optimal Trajectory Existence 
Theory (NOTET) is given and the first order optimality equations are further differentiated to second order 
to acquire the control modifications. The perturbations of the terminal co-states are expressed with the 
current states perturbations and the revised terminal constraints by solving the second order equations 
and inversely integrating the perturbation dynamic equations. The optimality of the proposed algorithm 
is proved. Finally, five different interception scenarios are simulated and comparisons are made with 
particle swarm optimization (PSO) method and GPM. Simulation results reveal that the proposed method 
has the merits of high precision equivalent with GPM and better computing efficiency than PSO and GPM, 
which testifies the effectiveness and online application feasibility.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The hypersonic vehicles in near space, which are traditionally 
characterized with high velocity over Mach 5, potential longitudi-
nal and cross maneuverable footprint over thousand miles, have 
the advantages of stealthy and penetration abilities over the exist-
ing flight vehicles [1,2]. More and more countries are developing 
such vehicles as carriers or weapons to gain dominance in the near 
space. However, a successful interception against such targets is 
a challenging task. In order to achieve the direct collision perfor-
mance, the interceptors with more advanced and precise guidance 
and control systems are in crucial demand. The high velocity of 
the targets compels the interceptors to acquire a relevant or even 
a superior velocity, which naturally results in the physical limita-
tions such as the dynamic pressure, overload, and control input 
saturations. The traditional midcourse guidance law such as the 
proportional navigation guidance and its modified versions can 
hardly meet these demands. What’s more, the unpredictable trajec-
tory caused by the potential maneuverability of the targets results 
in a rapidly modified predicted impact point (PIP) rather than a 
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relatively fixed one as in the conventional interception. The in-
terceptors should be able to fly towards the always changing PIP 
while satisfying the physical constraints at the same time, which 
should be treated as an online trajectory modification or trajec-
tory regeneration problem rather than the conventional trajectory 
following one.

However, the accomplishment that takes all of the challenges 
into consideration is relatively little, and most of the current stud-
ies just focused on one of the aspects. For example, many experts 
have carried out the research about the real-time trajectory gener-
ation problem. The representative accomplishments can be found 
by Faiz and Lwis with the differential flatness method [3,4], Yang 
with the polynomial parameterization method [5], Verma with 
the inverse dynamics method [6], Doebbler with the discrete-node 
heuristic search method [7], Dever with the trajectory interpola-
tion method [8], Henshaw with the indirect collocation method 
[9], Somavarapu with the direct collocation method [10], Wang 
and Zhao with the particle swarm optimization method [11,12]. 
The recently well-developed Gauss Pseudospectral Method (GPM) 
has also found its way in the online trajectory optimization area 
[13–15] with its fast convergence and optimality characteristic 
[16]. However, the researches aforementioned have testified the 
online trajectory generation, but failed to consider the trajectory 
modification or regeneration problem. In this aspect, some experts 
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attempt to introduce the receding horizon control method [17,18], 
and the model predictive static programming method [19–21] to 
iteratively detect the changes of the terminal trajectory destina-
tions, and some other experts use the polynomial function [22], 
multiple shooting method [23] and particle swarm optimization 
method [24] for the trajectory reshaping. These accomplishments 
achieve the trajectory regeneration at the cost of totally desert-
ing the former nominal one and thus put a crucial burden on the 
computing efficiency and onboard computation. In fact, the former 
nominal trajectory could be used to generate a new trajectory with 
the neighboring optimal control theory if the revised terminal con-
straints or the perturbed states are not far from the nominal ones. 
Yan [25,26] and Tian [27] have designed a robust state feedback 
guidance law with the indirect Legendre pseudospectral feedback 
method to negate the initial trajectory perturbations. However, in 
case of the terminal states modifications, their accomplishments 
fail to achieve satisfactory results. Xu and Huang [28–31] have 
further studied the hypersonic flight control systems under cir-
cumstances of actuator fault and dead-zone input nonlinearity 
with back-stepping neural network design, which give insight into 
the online control command realization for hypersonic intercep-
tors.

In terms of the midcourse trajectory modification demanded by 
the advanced interceptors, an online optimal midcourse trajectory 
modification algorithm is designed in this paper that makes full 
use of the former nominal trajectory information. A further leap 
is made compared with Refs. [25–27] by taking both of the cur-
rent states perturbations and the revised terminal constraints as 
feedback inputs to allow for the terminal position modifications. 
The control modifications are then generated by further differen-
tiating the first order optimality conditions instead of searching 
for a proper control at a vast allowable domain as done in the 
conventional researches [17–24]. The difficulty of expressing the 
perturbations of the co-states is resolved by solving the terminal 
second order equations and inversely integrating the perturba-
tion dynamic equations to the initial moments. Simulation results 
show that the algorithm has the merits of high precision equiva-
lent with the GPM and better computing efficiency than GPM and 
PSO.

The remainder of the paper is organized as follows. The mid-
course trajectory generation mathematical model is introduced as 
an optimal control problem in Section 2. In Section 3, the GPM 
is introduced for the generation of the offline nominal trajectory 
that satisfies the first order optimality conditions. Section 4 de-
scribes the online trajectory modification algorithm in detail with 
the neighboring optimal control theory and in Section 5 the sim-
ulation results are presented to prove the effectiveness of the pro-
posed method. Section 6 gives the conclusions.

2. Problem formulation

2.1. Interceptor dynamic model

The interceptor considered in this research is assumed to be a 
non-rotational rigid body, of which the dynamic equations in the 
planner and horizontal plane are similar and thus can be sepa-
rated. Without loss of generality, the planner point-mass kinematic 
equations are considered, which can be described as follows:

V̇ = P cosα − CxqS

m
− g sin θ (1)

θ̇ = P sinα + C yqS

mV
− g cos θ

V
(2)

ẋ = V cos θ (3)

ẏ = V sin θ (4)

where V is the velocity of the interceptor. P is the thrust value, 
g is the gravitational acceleration. m is the total mass of the in-
terceptor. θ is the flight path angle. q is the dynamic pressure. 
S is the reference area. x and y are the locations in the inertial 
coordinate. Cx and C y are the drag coefficient parameter and the 
lift coefficient parameter respectively, which have the mathemati-
cal form of

C y = Cα
y (Ma)α (5)

Cx = Cx0(Ma) + K (Ma)C2
y (6)

where α is the angle of attack, Ma is the Mach number. Cα
y is the 

partial derivative of C y in respect to α. Cx0 and K are zero-lift drag 
coefficient and induced drag coefficient. Noticing that Cα

y , Cx0 and 
K are all functions of the Mach number.

In order to ensure the trajectory’s smoothness and the online 
realization, several constraints should be considered in the trajec-
tory generation process, such as the dynamic pressure constraints:

q = 1

2
ρV 2 ≤ qmax (7)

where qmax is the maximum dynamic pressure, ρ is the air density 
as a function of the altitude expressed with Eq. (8):

ρ = ρ0e− y
yr (8)

where ρ0 = 1.2250 kg/m3, yr = 7254.3 m. The control input α
should be constrained within the physical bound:

‖α‖ ≤ αmax (9)

The constraint of the overload n is denoted as:

n =
√

(CxqS)2 + (C yqS)2

mg
≤ nmax (10)

2.2. Trajectory optimization problem

As the most time consuming phase in the interception pro-
cess, the midcourse guidance is of great importance to deliver the 
interceptor to a specified area for further midcourse and termi-
nal guidance handover. The final states of the midcourse guidance 
serve as the initial states of the terminal guidance. As to the hy-
personic vehicle interception scenarios, the adjusting time left for 
the terminal guidance is very short and if the initial states di-
verge far from the desired ones, the kinematic kill performance 
can hardly be achieved. So the control objective of the midcourse 
guidance is selected as the PIP with specified terminal flight path 
angle constraint and the maximum terminal velocity is preferred. 
The criteria function J can be formulated as:

J = φ
(
X(t f ), t f

) = −V f (11)

where X = [ V θ x y ]T. The terminal cost function is described 
as:

ψ = [ θ − θ f x − x f y − y f ]T = 0 (12)

The path constraints with Eqs. (7)–(10) can be stated as:

C
(
X(t), u(t), t

) ≤ 0 (13)

By introducing the Lagrange parameters ν = [νθ νx ν y ]T, the 
auxiliary function � can be written as:

� = φ + νTψ (14)

The Hamilton function of the trajectory optimization problem H
can be formed as:
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