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A B S T R A C T

Orbital uncertainty propagation plays an important role in space situational awareness related missions such as
tracking and data association, conjunction assessment, sensor resource management and anomaly detection.
Linear models and Monte Carlo simulation were primarily used to propagate uncertainties. However, due to the
nonlinear nature of orbital dynamics, problems such as low precision and intensive computation have greatly
hampered the application of these methods. Aiming at solving these problems, many nonlinear uncertainty
propagators have been proposed in the past two decades. To motivate this research area and facilitate the
development of orbital uncertainty propagation, this paper summarizes the existing linear and nonlinear
uncertainty propagators and their associated applications in the field of orbital mechanics. Frameworks of
methods for orbital uncertainty propagation, the advantages and drawbacks of different methods, as well as
potential directions for future efforts are also discussed.

1. Introduction

The term space situational awareness (SSA) refers to the ability to
view, understand and predict the physical location of natural and
manmade objects in orbit around the Earth, with the objective of
avoiding collisions [1]. In recent years, SSA has gained increasing
attentions as the number of the tracked resident space objects (RSOs)
continues to grow rapidly. By December 6, 2016, the number of space
objects with sizes larger than 10 cm is beyond 17,000, with 76% of them
being space debris (Table 1). SSA is the comprehensive knowledge of the
near-Earth space environment through the tracking and identification of
orbiting space objects in order to protect space assets and maintain
awareness of potentially adversarial space deployments. The proper
characterization of uncertainty in the orbital state of a space object is
essential to many SSA functions including tracking and data association,
conjunction analysis and probability of collision, sensor resource
management, and anomaly detection [2].

The efficient and accurate propagation of uncertainty in orbit for
long time durations is an important issue in SSA. The main reason is
that the number of RSOs of interest, typically defined to be equal to or
larger than the size of a softball (∼10 cm), is significantly greater than
the number of sensors available for tracking them. Only sparse
measurements can be expected for a given object. Thus, it is often
required to propagate uncertainty for multiple orbits, possibly span-
ning several days without measurement.

In the field of space trajectory design and operation, uncertainty
propagation usually refers to the orbital uncertainty propagation, that is to

determine the satellite's state moments (generally mean and covariance
matrix) or probability density function (PDF). In the last forty years of the
20th century, orbital uncertainty propagations are usually addressed by
linear models or nonlinear Monte Carlo (MC) simulations [3]. The linear
methods are highly efficient as they linearize the problem, but their
accuracy declines in highly nonlinear systems or long-duration propaga-
tions. On the other hand, the MC simulation provides high-precision
results, but is computationally expensive. To avoid these shortcomings,
many analytical or semi-analytical techniques for nonlinear orbital
uncertainty propagation have been developed in recent years.

This review provides a clearly categorized survey for the existing
uncertainty propagation methods and their associated applications.
Some related problems which have not been well addressed are also
discussed. This paper is by no means exclusive, and we apologize to
authors and readers for whose work that have not been included. The
outline of the paper is structured as follows. Section 2 presents some
theory preliminaries related to uncertainty and makes an introduction
for the orbital uncertainty propagation problem. Section 3 gives an
overall review and category for different uncertainty propagation
methods. Applications of uncertainty propagation in SSA and space
flight mission designs are discussed in Section 4. Furthermore, Section 5
discusses unsolved problems and future research directions for orbital
uncertainty quantification. Finally, conclusion is drawn in Section 6.

2. Theory preliminaries

For convenience of discussion, we begin with the basic conceptions
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and definitions relevant to uncertainty propagation in this section.

2.1. Probability theory and stochastic process

2.1.1. Stochastic dynamics equation
Orbital dynamic problem entailing uncertainty can be expressed by

the Itô stochastic differential equation [4],

x f x G βd t t dt t d t( ) = ( , ) + ( ) ( ) (1)

where x∈ℝn is the random state vector, β t( )∈ℝm is a m-dimensional
Brownian motion process with zero mean and covariance Q(t). The
vector function f x t( , ) captures the deterministic part of the dynamics,
and G t( ) is an n×m matrix characterizing the diffusion. The initial
condition uncertainty is determined by the PDF xp t( , )0 0 , assumed
known.

In this study, the deterministic part f x t( , ) of the dynamics
concerns the satellite's motion under a non-spherical gravitational
force field, which is given by an ordinary differential equation (ODE)
[5]

f x r r a Γt μ
r
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where x∈n denotes the satellite's state with dimensionality of n=6,
x r v= [ , ]T , r and v are the position and velocity vectors described in
the central body's inertial Cartesian frame, respectively; μ is the central
body's gravitational constant, r=||r|| and ||∙|| denotes the Euclid norm
of a vector; aper is the perturbation acceleration caused by factors such
as non-spherical gravity and the atmospheric drag, and Γ is the thrust
acceleration vector. If the impulsive maneuver is assumed, the thrust
acceleration can be approximated in terms of m impulses as follows:

∑Γ vt Δ δ t t( ) = ( − )
l

m

l l
=1 (3)

where m is the number of impulses, tl is the lth maneuver time, and
δ t t( − )l is the delta function.

For a given initial condition x x t= ( )0 0 , the solution to Eq. (2) can be
implicitly denoted as

x ϕ xt t t( ) = ( ; , )0 0 (4)

2.1.2. Fokker–Planck equation
For a given n-dimensional continuous random vector x∈ℝn, the

probability of x in some volume Ξ can be defined as:

∫x x xΞ p tPr( ∈ ) = ( , )d
Ξ (5)

where xp t( , ) is the PDF of random vector x. It should be noticed that
the PDF must be nonnegative for all x and it also must integrate to
unity over the state space.

For a given dynamical system that satisfies the Itô stochastic
differential equation, the time evolution of a PDF xp t( , ) over x at
time t is described by the Fokker–Planck equation (FPE) [6]:
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The FPE is a partial differential equation that satisfies the propaga-
tion of a PDF. Hence, the solution of the FPE provides a complete
statistical description of a trajectory governed by Eq. (1). However,
solving the FPE in orbital mechanics is a difficult task, primarily
because the underlying FPE is defined in a relatively high dimensional
state–space (6-D) and is driven by the nonlinear perturbed Keplerian
dynamics, as shown in Eq. (2). Therefore, most of the previous
uncertainty quantification algorithms make extensive use of Gaussian
and local linearity assumptions, so that only lower-order statistical
moments require propagating, especially the mean vector and covar-
iance matrix.

2.1.3. Statistical moments
In statistics, the moment of PDF is a specific quantitative measure

of the shape of a set of points. Particularly, the moments up to fourth-
order, i.e., mean, variance, skewness, and kurtosis, provide information
related to the shape of a PDF. The mean is used to refer to one measure
of the central tendency of a probability distribution, the variance
measures how far a set of random numbers are spread out from their
mean, the skewness is a measure of symmetry (or more precisely, the
lack of symmetry), and the kurtosis is a measure of whether the data
are heavy-tailed or light-tailed relative to a normal distribution.

Given a random vector x∈ℝn with a PDF xp t( , ), the mean and
covariance matrix are defined as [4]:

∫
∫

m x ξ ξ ξ

P x m x m ξ m ξ m ξ ξ

t E t p t d

t E p t d

( ) = [ ( )] = ( , )

( ) = [( − )( − ) ] = ( − )( − ) ( , )T T
∞

∞ (7)

where E[∙] represents the expectation operator. Note that the variances
appear along the diagonal elements of the covariance matrix, i.e.,
σ P= diag( )2 ; σ is the standard deviation and diag(∙) denotes to extract
the diagonal of a matrix or to build a matrix with assigned diagonal.

Differentiating the mean and covariance matrix in Eq. (7), we get:
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Similarly, the third-order standardized moment, skewness Si, and
the fourth-order standardized moment, kurtosis K i, can be defined as
[4]:
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2.1.4. Gaussian probability density function
In practice, we usually assume the unknown uncertainties as

Gaussian distribution. The Gaussian PDF for an n-dimensional
Gaussian random vector x~ x m Pp ( ; , )g is defined as:
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where det(∙) denotes the determinant of a square matrix and exp(∙)
denotes the exponential function.

An important property of the Gaussian distribution is that the
statistics of the Gaussian random vector x can be completely described
by the first two moments, i.e., m and P. The higher moments of x, such
as E[xixjxk] and E[xixjxkxl], can be computed as functions of m and
P, e.g., the first four moments of the Gaussian probability density

Table 1
Orbital population till December 6, 2016a.

Status Payloads Debris Total

On Orbit 4,269 13,587 17,856
Decayed 3,194 20,826 24,020
Total 7,463 34,413 41,876

a URL: http://www.celestrak.com/satcat/boxscore.asp [retrieved 6 December 2016].
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