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a  b  s  t  r  a  c  t

An  energy-controlling  technique  to  actively  manage  the  reflective  property  of  waves  from  solid  boundary
is presented.  As  linear  waves  propagate  through  an  energy-controlling  area,  a reduction  in  wave  heights
occurs  due  to  energy  dissipation,  which  can  be placed  under  direct  control  through  the  imaginary  part
of  the  wavenumber  and  phase  velocity.  Based  on this  relationship,  the  present  study  investigates  a  new
method  to control  reflected  waves  with  desired  heights  in the  mild slope  equation  model.  The  method  is
validated  through  numerical  tests  for various  reflection  coefficients  and  the  results  confirm  the  promising
use of energy-controlling  boundary  condition  for  partial  wave  reflections.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Waves propagating from the deep water to the shallow water
transform through a series of processes such as diffraction,
refraction, shoaling, reflection and wave breaking. The wave trans-
formation process is highly complex, and its prediction is largely
dependent on the numerical approach. As numerical solutions
inevitably bring about undesirable errors due to the discretization,
numerical approaches to minimize errors are required for reliable
solutions. In addition to this, appropriate governing equations and
boundary conditions are crucial to accurate solutions. This study
focuses on boundary conditions related to waves, two of which are
most common; open boundary condition and reflection boundary
condition. Open boundary condition refers to an artificial treatment
at the boundary to help waves propagate out of the computational
domain without re-reflection. Reflection boundary condition refers
to one that allows perfect or partial wave reflections by structures
or topography.

To diminish wave reflections at certain areas of computational
domain, the initial concept of sponge layer technique was designed
and proposed by Israeli and Orszag [1] and its use was  practically
demonstrated by Larsen and Dancy [2]. As it provides a convenient
and efficient technique to control the wave energy damping, it has
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been an alternative to the open boundary condition, which may  be
prone to produce undesirable errors. In practice, however the par-
tial reflection of waves due to structures or topography, even the
natural beach with a mild slope, occurs more frequently than the
open boundary condition or radiation boundary condition. Thus,
this study introduces an energy-controlling method for the practi-
cal application of damping layers to generate partial reflection cases
based on the linear wave theory. Previously, many studies related
to partial reflection have been carried out [3–5] providing accu-
rate calculation results. In the present study, a new method which
is more intuitively and easily understood is introduced to manage
the wave reflection with arbitrary coefficient at boundaries. The
reduction in wave height in energy-controlling areas (i.e., partially-
damping layers) is determined, in principle, by the imaginary part
of the wavenumber and the wave phase velocity. Based on this
relationship, some waves are reflected selectively by adjusting two
variables, the width of an energy-controlling area and the imagi-
nary wavenumber in an appropriate way. Although the suggested
method must employ an additional energy-controlling area, it is
very simple and easy to construct partial-reflection boundary con-
ditions on the theoretical basis. The technique is validated through
the mild slope equation model to confirm its accuracy.
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Fig. 1. Schematic diagram for reflected waves by an energy-controlling area.

2. Derivation of the equations

2.1. Governing equation

The mild slope equation derived for the linear waves is pre-
sented as follows [6–8]
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where Qx and Qy are the flow rates in the x and y directions, respec-
tively, � is the free surface elevation, c is the phase velocity, and n is
cg/c, the ratio of phase speed and group velocity defined as follows.
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In Eqs. (1) and (2), fD is a term added to consider energy dis-
sipation occurring artificially inside the energy-controlling area or
due to breaking waves or bottom friction. Therefore, it satisfies the
following equation [9,10],

∇ · (cgE) = −fDnE (5)

where E is the wave energy defined by �gH2/8.
Waves propagating over a constant water depth can be repre-

sented as

H(x) = H0 exp(ikx) (6)

where H0 is the incident wave height. When energy dissipation
of waves occurs, the wavenumber can be expressed by a complex
wavenumber of kr + iki so that Eq. (6) can be written as

H = H1 exp(ikrx) (7)

where H1(=H0 e−kix) is the decreasing wave height as the wave
propagates due to energy dissipation, which is related to the imag-
inary number (ki) of the wavenumber. The energy dissipation ratio
εD related to fD is calculated as follows.
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From Eqs. (5) and (8), fD can be expressed as

fD = 2kic (9)

2.2. Determination of ki

As shown in Fig. 1, incident waves with the wave height of
H0 propagate through the energy-controlling area with a width,
w. Incident waves are reflected completely from the wall and

Fig. 2. Computational domain.

returning back to the previous state passing through the energy-
controlling area again in opposite direction with the wave height
of H1. In such case, ki value can be determined by Eq. (7) as follows

ki = − ln(H1/H0)
2w

= − ln Cr
2w

(10)

where Cr is the reflection coefficient. Using Eq. (10), ki value can
be tuned artificially to produce the desired reflection coefficient
under the given width of an energy-controlling area. In this man-
ner, partially reflected waves can be realized, promising the use
of energy-controlling method for partial reflection of waves. It is
worthy to note that the limiting condition of Cr = 0 is theoretically
in accordance with ki =+∞,  which can be justified considering no
wave reflection resulting from infinite(i.e., complete) dissipation
of energy.

3. Verification of the equation

Using a numerical solution, the equation derived in the previ-
ous section was  verified. The numerical solution was  calculated
through the application of the finite difference method that
employed staggered grids [10] to Eqs. (1)–(3). The discretized equa-
tions of the one-dimensional numerical model are as follows:
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where � is the displacement of the free surface, Q is the flow rate
and g is the gravity acceleration. In the numerical tank for simula-
tion, an internal wave maker was utilized [11,12] at the center of
domain while an energy-controlling area was deployed at each end
with different purposes as shown in Fig. 2. No re-reflected wave
was expected to be generated at the left end since typical values
for complete energy dissipation were used for fD. At the right end,
meanwhile, ki values determined by Eq. (10) were applied to pro-
vide the partial reflection condition with a desired coefficient. The
water depth was set to 4 m and the wave period was determined
to such a value that keeps the relative water depth as 0.1�.

Fig. 3 depicts simulation results of instantaneous surface eleva-
tions at different phases in the case of Cr = 0.5. Surface elevation
at t = 40.5T creates maximum excursion of the free surface with a
normalized amplitude of 1.5, while those at t = 40.25T  and 40.75T
result minimum. It is also clearly observed the energy-controlling
effects in the shaded area on the right end. Fig. 4 shows the calcu-
lated reflection coefficients with errors for different widths of the
energy-controlling areas on the right end. It appears that there is a
discrepancy for the low reflection coefficients while good agree-
ment is observed for larger values. The calculated results show
obvious overestimation in reflection coefficients than the target
ones, and this develops as lower reflection coefficients with lim-
ited discrepancy. However, the calculated results are improved as
the width of an energy-controlling area increases. For larger coeffi-
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