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a  b  s  t  r  a  c  t

The  present  study  considers  the  prediction  of extreme  values  of the  second-order  hydrodynamic  param-
eters  related  to  offshore  structures  in waves,  where  the application  of Gaussian  distribution  is not  valid.
Particularly,  this  study  focuses  on a characteristic  function  approach  in the  frequency  domain  to  estimate
the  probability  distribution  of  the second-order  quantities,  and the  results  are  compared  with  direct  sim-
ulations  in  the  time  domain.  The  stochastic  behaviors  of  the  second-order  hydrodynamic  quantities  are
investigated  with  the  characteristic  function  approach,  which  involves  eigenvalue  analyses  of  Hermi-
tian kernels  constructed  with  quadratic  transfer  functions.  Three  different  second-order  responses  are
considered:  the springing  responses  of  TLP  tendons  representative  of  the  sum-frequency  problem,  the
slow-drift  motions  of a  semi-submersible  platform  moored  in  waves  as  a representative  of  the  difference-
frequency  problem,  and  the  wave  run-up  around  a vertical  column  for  regular  and  irregular  waves.  The
applicability  of the  present  approach  in  predicting  extreme  values  is  assessed  by  comparing  the  results
with the  values  obtained  from  time-domain  signals.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The offshore oil and gas industry has grown up significantly over
the last decades, and the relevant technologies are mature enough
to allow the developers to advance to ultra-deep sea. For example,
the ‘Perdido’ spar has been in operation since 2010 from a water
depth of 2450 m in the Gulf of Mexico, and the ‘Big Foot’ Tension
Leg Platform (TLP) is planning to produce its first oil in 2016 from
a water depth of 1585 m.  As the installation water depth increases,
the probability of failure of the offshore structure may  increase,
because it needs to sustain a possibly larger payload and has longer
and more complex mooring lines and risers. Also, offshore struc-
tures in deep sea are likely to encounter more severe sea states. To
reflect this high probability of failure in deep water, the design load
cases have become increasingly conservative, and now the return
period of the environmental condition used for seakeeping analyses
reaches up to 10,000 years.

When an offshore structure is subjected to such severe environ-
mental conditions, the hydrodynamic responses of the platform
or the lines can no longer be predicted with the linear theory
since apparent nonlinear phenomena may  be significant or may
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even dominate the responses. And in most cases, the discrepan-
cies between the linear theory and the nonlinear responses are
well compensated by including second-order terms in the anal-
yses. Representative examples of these nonlinear hydrodynamic
responses which can be explained by the second-order theory are
the springing responses of TLP tendons, the slow-drift motions
of moored offshore platforms, and the wave elevation around a
vertical column. The springing responses refer to high-frequency
resonant heave or pitch motions of the TLP and the corresponding
fluctuations that occur in the tendon tensions. Because the natu-
ral period of heave motions of TLP are generally around 3 s, which
is far lower than the wave periods, second-order sum-frequency
wave loads are adopted to explain the resonant behaviors. The
slow-drift motion of a moored offshore platform is also a resonant
response induced mostly by second-order wave loads. In this case,
because moored floating platforms have very high natural periods
in horizontal motions, the resonance is explained by including the
second-order difference-frequency wave loads. The wave elevation
around a vertical column is an important parameter that deter-
mines the air gap of an offshore platform; however, it was proved
both theoretically and experimentally by Kriebel [1] that a signifi-
cant underestimation could be made if the nonlinear components
of the wave elevations are not considered. According to the study,
average discrepancies between the experimental and the theoreti-
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cal results reduced to one-quarter when including the second-order
components of the wave elevations.

The aforementioned second-order hydrodynamic quantities can
be mathematically modeled as a two-term Volterra series. Because
this two-term Volterra series is a nonlinear function, a Gaussian
stochastic input, which in hydrodynamics is mostly a linear irregu-
lar wave train, does not lead to a Gaussian stochastic output. Hence,
a number of studies dealt with determining the probability dis-
tribution of the two-term Volterra series model. Kac and [2] and
Bedrosian and Rice [3] first developed the probabilistic distribution
of this model in the communication field. Their approach was to cal-
culate the characteristic function of the random variable by solving
the eigenvalues of the integral equation constructed with the cor-
responding kernel of the system. Later, Neal [4] first applied this
theory to the ocean engineering field, deriving the integral equation
for the probability distribution of the second-order hydrodynamic
forces. After that, many researchers applied the theory to second-
order hydrodynamic problems. Naess [5] and Kim [6] derived the
probability distribution of the second-order difference-frequency
wave loads explicitly by reducing the inverse Fourier transforming
of the characteristic function to a series of Cauchy integrals. Appli-
cation of the theory to the sum-frequency springing responses of
TLPs was made later by Kim and Yue [7], Naess and Ness [8], Naess
[9], and Eatock Taylor and Kernot [10].

Most of the studies described above dealt with the probability
distribution of the second-order quantity. To predict the extremes
of the quantity in a certain duration, however, the exceedance
probability distribution of peak values needs to be estimated.
For the slow-drift forces and motions, Naess [11,12] investigated
the extreme-value behavior by estimating the up-crossing fre-
quencies asymptotically. However, the equation of motion was
assumed to be completely linear, which is rather oversimplified
as nonlinear restoring and damping significantly affect slow-drift
motions. Later, Naess and Johnsen [13] and Naess, Gaidai, and
Teigen [14] dealt with the statistics of the slow-drift responses
from a nonlinear equation of motion, but this subject is still under
investigation owing to its complex nonlinearities. In the case of
springing responses, extreme-value statistics have not been con-
sidered as much because the springing response is more relevant to
the fatigue damage to tendons. However, the maximum response
of springing should also be carefully examined to ensure design
safety. The second-order wave elevation around a vertical cylinder
has been investigated by many researchers. However, most of these
studies focused on analytical or numerical computations of wave
elevation (Kriebel, [1]; Kriebel, [15]; Eatock Taylor and Huang [16])
and not its stochastic behaviors.

In this study, the stochastic behaviors of the second-order
hydrodynamic quantities and their extreme-value distributions
are reinvestigated. The probability distributions of the second-
order quantities are calculated based on the characteristic function
approach, and the extreme-value statistics are estimated assum-
ing a narrow bandwidth. The aforementioned three second-order
hydrodynamic quantities are considered: the springing responses
of TLP tendons, the slow-drift motions of moored offshore plat-
forms, and the wave elevation around a vertical column. The
applicability of the present approach in predicting the extreme
values for each of the second-order quantities is assessed by com-
paring the results with direct simulations in the time-domain.

2. Mathematical background

2.1. Probability distribution of two-term volterra series

As mentioned briefly in the introduction, the second-order
hydrodynamic quantity is expressed as a two-term Volterra series

which is a nonlinear function of an input signal. Hence, even
though the input signal is Gaussian, the output signal does not
necessarily follow the same stochastic model. However, the prob-
ability distribution of the second-order response can be estimated
semi-analytically using the characteristic function method as the
stochastic model of the input signal is known and the mathematical
model for the response is well defined.

Let Y(t) be a nonlinear hydrodynamic response at a certain point
to unidirectional random waves X(t). Then Y(t) can be represented
as a function of X(t) as

Y(t) = F (X(t)) ,
{
X(t)| − ∞ < t < ∞

}
(1)

where F(x) is the corresponding nonlinear function of X(t). If F(x) is
continuous, Eq. (1) can be expanded in a functional power series:

Y(t) = g0 +
∫ ∞

−∞
g1(t, t1)X(t1)dt1 + · · · +

∫ ∞

−∞
· · ·

∫ ∞

−∞
gn

(t, · · ·, tn)X(t1)· · ·X(tn)dt1· · ·dtn + · · · (2)

where gi indicates integral kernels for each order. Assuming the
nonlinear system is causal and time-invariant, and limiting the
analysis to include excitation effects up to second order, Eq. (2)
becomes a two-term Volterra series as follows:

Y(t) = Y0 + Y1(t) + Y2(t)

= h0 +
∫ ∞

0

h1(t1)X(t − t1)dt1 +
∫ ∞

0∫ ∞

0

h2(t1, t2)X(t − t1)X(t − t2)dt1dt2

(3)

In Eq. (3), Yn(t) indicates the n-th order component of total response
Y(t), and h1(t1) and h2(t1, t2) are linear and quadratic impulse
response functions, respectively. The zero-th order term Y0 is
hereby neglected since it is not a stochastic variable.

The response Y(t) can also be expressed alternately with linear
and quadratic transfer functions obtained in the frequency domain.
Let the random wave X(t) be expressed as a sum of sinusoidal com-
ponent waves, then the equivalent expressions of Y1(t) and Y2(t)
are obtained as follows.

X(t) = Re

⎡
⎣ ∞∑
j=1

Aje
iωjt

⎤
⎦ (4)

Y1(t) =
∫ ∞

0

h1(t1)X(t − t1)dt1 = Re

⎡
⎣ ∞∑
j=1

AjH1(ωj)e
iωjt

⎤
⎦ (5)

Y2(t) =
∫ ∞

0

∫ ∞

0

h2(t1, t2)X(t − t1)X(t − t2)dt1dt2

= Re

[
∞∑
j=1

∞∑
k=1

AjAkH2(ωj, ωk)e
i(ωj+ωk )t +

∞∑
j=1

∞∑
k=1

AjA∗
k
H2(ωj, −ωk)ei(ωj−ωk )t

]
(6)

In the equations above, ωj and Aj indicate the frequency and the
complex amplitude of the j-th wave component, respectively, and
H1(ωj) and H2(ωj , ωk) represent the linear transfer function (LTF)
and the quadratic transfer function (QTF), respectively. Upper script
()* indicates the complex conjugate of a quantity. From Eqs. (5)
and (6), the frequency-domain transfer functions are derived as
the Fourier transforms of impulse response functions as follows:

H1(ω) =
∫ ∞

−∞
h1(�)e−iω�d� (7)

H2(ωj, ωk) =
∫ ∞

−∞

∫ ∞

−∞
h2(�1, �2)e−i(ωj�1+ωk�2)d�1d�2 (8)
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