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a  b  s  t  r  a  c  t

A  key  factor  for  computing  environmental  contours  is  the  appropriate  modeling  of  the  dependence  struc-
ture  among  the  environmental  variables.  It is  known  that  all the  information  on the  dependence  structure
of  a  set  of  random  variables  is contained  in the  copulas  that  define  their  multivariate  probability  distribu-
tion.  Provided  that copula  parameters  are  estimated  by  means  of  statistical  inference  using observations,
recordings,  numerical  or historical  data,  uncertainty  is unavoidably  introduced  in  their  estimates.  Para-
metric uncertainty  in  the copulas  parameters  then  introduces  uncertainty  in the  environmental  contours.
This study  deals  with  the  assessment  of  uncertainty  in  environmental  contours  due  to  parametric  uncer-
tainty  in  the  copula  models  that  define  the  dependence  structure  of  the  environmental  variables.  A  point
estimation  approach  is adopted  to estimate  the  statistics  of the  uncertain  coordinates  of  the  environmen-
tal  contours  considering  they  are  given  in  terms  of  inverse  functions  of conditional  copulas.  A  case  study
is  reported  using  copulas  models  estimated  from  storm  hindcast  data  for the  Gulf  of  Mexico.  Uncertainty
in  environmental  contours  of  significant  wave  height,  peak  period  and  wind  speed  is assessed.  The accu-
racy  of  the  point  estimation  of the  mean  and  variance  of  the  contour  coordinates  is validated  based  on
Monte  Carlo  simulations.  A parametric  study  shows  the  manner  in  which  greater  parametric  uncertainty
induces  larger  variability  in  the  environmental  contours.  The influence  of  parametric  uncertainty  for
different  degrees  of  association  is  also analyzed.  The  results  indicate  that  variability  between  contours
considering  parametric  uncertainty  can be meaningful.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Environmental contours are a useful and practical means to
characterize multivariate natural hazards for structural design
purposes. They define combinations of possible values of envi-
ronmental variables that should be considered for finding the
maximum system response associated with a given exceeding
probability or return period [1,2]. Computational techniques for
estimation of environmental contours and applications in offshore,
earthquake and wind engineering can be found in [3–12]. The com-
putation of environmental contours requires the description of the
joint probability distribution of the environmental variables. For
instance, building environmental contours of extreme sea states
for offshore applications requires the description of the multi-
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variate distribution of metocean variables such as significant or
maximum wave height, peak spectral period, wind velocity, or cur-
rent velocity. Provided the Rosenblatt transformation is applied
for computing environmental contours, the joint distribution of
the environmental variables can be described in terms of a set
of conditional distributions. For instance, in offshore engineering
applications, the marginal distribution can be estimated for the
significant wave height (HS), and then the distribution of the peak
period (TP) can be modeled conditionally on the wave height [13]. A
large amount of data is required for estimation of the parameters of
conditional distributions. Such requirement increases greatly with
the problem dimension, making more difficult its application in
practical cases without having to introduce some independence
assumptions when more than three or four variables are consid-
ered. Another approach is to estimate the marginal distributions
and the linear correlation matrix to assemble the joint distribution
using the Nataf model [14,15].

A key factor for developing environmental contours is the
appropriate modeling of the dependence structure among the
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environmental variables which is present in the multivariate prob-
ability distribution. Recent studies have shown that the statistical
dependence between environmental variables has a significant
influence on the contours [9,16]. Focusing on a rigorous modeling of
the dependence structure, Montes-Iturrizaga and Heredia-Zavoni
have proposed procedures for the use of copulas to compute envi-
ronmental contours [16,17]. Copulas are functions that fully define
the multivariate distribution of a set of random variables [18]. It
can be shown that multivariate distributions can be expressed in
terms of the marginal distributions and the density of the copula,
where all the information on the dependence structure of the ran-
dom variables is contained. An advantage of the copula approach
is that the development of an appropriate model for the depen-
dence structure can be carried independently from the particular
choices of marginal distributions of the random variables. Using
copula theory, it has become clear that assembling multivariate dis-
tributions using the Nataf model yields the dependence structure
of a Gaussian copula [19].

There are several methods for estimating the parameters of a
copula. Measures of association such as Kendall’s � or Spearman’s �
can be used as estimators for one-parameter copulas [20]. The more
general method of maximum pseudo-likelihood (MPL) is avail-
able for multidimensional copula parameters [21]. Formulations
for computing the statistics of the copula parameter estimators
are also available. Provided that copula parameters are estimated
by means of statistical inference using observations, recordings,
numerical or historical data, uncertainty is unavoidably introduced
in their estimates. Parameter uncertainty is therefore involved in
the copulas that model the dependence structure among the envi-
ronmental variables. Since environmental contours rely on the
characterization of the dependence among environmental vari-
ables, uncertainty is also introduced in their computation. This
study deals with the assessment of the uncertainty in environ-
mental contours due to parametric uncertainty in the modeling
of the dependence structure between the environmental vari-
ables.

We first introduce some basic concepts on modeling statisti-
cal dependence using copulas and discuss the formulation for the
computation of environmental contours in terms of copulas. The
point-estimation method adopted to estimate the statistics of the
coordinates of the environmental contours is presented next. The
effects of parametric uncertainty on environmental contours of sig-
nificant wave height vs peak period and significant wave height vs
wind speed are then examined using storm hindcast data from the
Gulf of Mexico. Validation of the point estimation method using
Monte Carlo simulations is analyzed and results of parametric anal-
yses are then given focusing also on the influence of parametric
uncertainty considering different degrees of association between
the metocean variables. A summary of the work and concluding
remarks are given at the end.

2. Modeling dependence for environmental contours

Consider an engineering system exposed to a natural event
whose occurrence in time is uncertain. Let X denote the vector of
uncertain environmental variables that characterize such natural
event for assessing the system response. The environmental con-
tours are defined by the values of the environmental variables x
in the physical space corresponding to the values of vector z in a
reduced space where |z| =  ̌ [1]. In other words, the environmen-
tal contour is the image of environmental variables in the physical
space corresponding to a d-dimensional hypersphere of radius ˇ
in the reduced space. The mapping from the physical space of
X = (X1, · · ·,  Xd) into the reduced space of independent standard
normal random variables Z = (Z1, . . .,  Zd), is performed using the

Rosenblatt isoprobabilistic transformation [22]. The inverse of this
transformation is given by,

x1 = F−1
1 (e1)

x2 = F−1
2|1 (e2|x1) (1)

xd = F−1
d|1,···,d−1 (ed|x1, , · · ·, xd−1)

where Fi (xi) is  the marginal cumulative distribution function
of Xi, Fi|1,···,i−1 (xi|x1, · · ·xi−1).  is the conditional distribution of Xi

given X1 = x1, · · · , Xi−1 = xi−1, and ej = �
(
zj
)
, j = 1, · · ·,  d, � being

the standard normal distribution function. Let pF denote the
exceedance probability of the system response to the natural event
characterized by X and assume the occurrence of such event is mod-
eled as a Poisson process with mean annual rate �E; the annual
exceeding probability is then pa = 1 − exp (−�EpF ). Considering
that  ̌ = −�−1 (pF ) and that the return period TR = 1/pa, the radius of
the hypersphere is defined by  ̌ = −�−1[−�−1

E ln(1 − 1/TR)]. Only
environmental variables are considered to be uncertain and the
system response is a deterministic function. The environmental
contours developed can be used to search for the maximum system
response associated with a return period or exceedance probability
for design purposes.

Developing environmental contours requires a joint probability
description of the environmental variables. Copulas are functions
which define the multivariate probability distribution of a random
vector or a set of random variables, and, as such, characterize the
dependence structure of the random variables. They are functions
that couple multivariate distribution functions to their marginal
distributions. Copulas have uniform one-dimensional margins on
the interval [0,  1] and are invariant under monotone increasing
transformations of the marginal [18]. Let us consider vector X of
random variables with marginal distribution functions Fi(xi), i =
1, · · ·,  d. The set of transformations Ui = Fi(Xi) define a dependent,
uniformly distributed vector of random variables U = (U1, · · ·,  Ud)
on [0,  1]d. If the functions Fi(xi) are continuous, then, the joint dis-
tribution function of X can be expressed as [18]

F(x) = C�(F1(x1), . . .,  Fd(xd)) = C�(u1, · · ·,  ud) (2)

where C�(u) is the copula of the distribution, C� : [0,  1]d →
[0, 1], u = (u1, . . .,  ud), and � is the vector of copula parameters.
The copula C� is also a joint distribution function of vector U. Eq.
(2) is known as Sklar’s theorem [18]. Furthermore, copula C�(u) is
defined by

C�(u) = F
(
F−1

1 (u1), . . .,  F−1
d

(ud)
)

(3)

and the corresponding copula density is given by,

c�(u) = ∂
d
C�(u1, . . .,  ud)
∂u1. . .∂ud

(4)

The joint probability density function of X, fX (x) =
fX (x1, . . .,  xd),is given by [23]:

f X(x1, . . .,  xd) = c�{F1(x1), , . . .,  Fd(xd)}
d∏
i=1

fi(xi) (5)

where fi (xi) is the marginal probability density function of Xi. Eq.
(5) clearly shows that the joint probability density is assembled by
the collection of marginal distributions and by the copula density
which retains all the information on the dependence structure of
the random variables. In general, the conditional marginal distri-
butions of X can be calculated from (see, e.g. [19,24])

Fi|1,···,i−1 (xi|x1, · · ·, xi−1) = C�i|1,···,i−1 (ui|u1, · · ·,  ui−1) (6)
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