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a  b  s  t  r  a  c  t

This  paper  describes  how  to estimate  the  uncertainty  of manoeuvring  sea trial  results  without  perform-
ing  repeated  tests  using  only  a simulation  model.  The  approach  is based on the  Monte  Carlo  method  of
uncertainty  propagation.  Moreover,  the  global  sensitivity  analysis  procedure  based  on variance  decom-
position  is  described.  As an  example,  the method  is applied  to estimate  the  uncertainty  of  10◦/10◦ zigzag
overshoot  angles  and  a 20◦ turning  circle  advance  and  tactical  diameter  for a small  research  vessel.  The
estimated  uncertainty  is compared  with  corresponding  experimental  uncertainty  assessed  from  repeated
tests.  The  method  can  be useful  for validation  studies  and other  studies  that involve  the uncertainty  of
sea  trial  results.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Currently, ship manoeuvring simulation models are widely
applied for training, standardization and engineering purposes.
However, recent studies [1] have shown a large scatter in the
results predicted by models developed by different organizations.
This indicates high demand for the development of validation tech-
niques, as well as for the improvement of ship simulation models.
The ITTC Manoeuvring Committee indicates the importance and a
lack of validation activities for ship simulators [2,3]. Validation is
performed via comparison of predictions made by a simulator with
experimental results for identical trials. Full-scale or model-scale
experiments are used to obtain a benchmark for validation. How-
ever, model-scale experiments are prone to scale effects; therefore,
full-scale experiments are preferable. Evaluation of the uncertainty
of experimental results is an important part of validation. The ITTC
issued a recommended procedure for the uncertainty analysis of
free running model tests [4] that outlines the main sources of uncer-
tainty in manoeuvring experiments. They use a combination of
three approaches to obtain the combined uncertainty: measure-
ment uncertainty analysis, repeatability analysis and uncertainty
propagation analysis. The uncertainty propagation analysis is based
on the Taylor series method. According to the method, the uncer-
tainty of the experimental result due to some input factor is equal
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to the product of the uncertainty of this factor and the so-called
uncertainty magnification factor (UMF). The UMF  is a linear local
absolute sensitivity coefficient and can be numerically estimated
using a simulation model. The total combined uncertainty is cal-
culated as the root summed squared of the individual uncertainty
contributions. Although this approach can be partly applied to full-
scale tests, some features cause a significant difference between
full-scale tests and model-scale tests. The price of repetitions is
very high for full-scale tests; therefore, the repetitions are rarely
performed. Moreover, sea trial results are influenced by environ-
mental effects, whose contribution to the resulting uncertainty is
sometimes dominating. These effects are represented by two  or
more independent factors (such as current speed and direction, or
wave height, period and direction) with strong interaction. There-
fore, the combined result uncertainty cannot be estimated using
the UMFs.

In this paper, we  consider an alternative approach to uncer-
tainty propagation based on the Monte Carlo method [5,6]. The
Monte Carlo method is more flexible and suitable for highly non-
linear systems and interconnected input factors. The Monte Carlo
method was previously used in manoeuvring to propagate the
uncertainty of force measurements in captive tests to the final
uncertainty of manoeuvring indices (overshoot angles) [7,8]. We
apply the method to estimate the uncertainty of repeated tests
and compare it with the experimentally determined uncertainty.
We also describe the global sensitivity analysis based on variance
decomposition and apply it to estimate the contribution of the input
factors to the total uncertainty. Thus, the main goal of the paper is
to demonstrate how to estimate uncertainty of full-scale manoeu-
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Nomenclature

� Standard deviation
CDF Cumulative distribution function
N(�,  �) Normal distribution with the mean � and the stan-

dard deviation �
OA Overshoot angle
PDF Probability distribution function
U(�1, �2) Uniform distribution, with the lower and upper

borders �1 and �2
U95 Expanded uncertainty, with 95% confidence
UMF  Uncertainty magnification factor

vring tests in practice, without actually performing repeated tests.
Therefore, we do not consider some possible sources of uncertainty
which are negligible, while focusing on more important ones. We
emphasize also that all the sensitivity coefficients obtained are spe-
cific for the case vessel and prescribed conditions. However, the
same algorithm can be applied to any other vessel.

The paper is organized as follows. Section 2 describes the Monte
Carlo method of uncertainty propagation. Section 3 describes how
to estimate the contribution of the input factors to the total
uncertainty of the result using graphical analysis and variance
decomposition. Section 4 describes how to use the Monte Carlo
method to estimate the uncertainty of manoeuvring trial results.
Section 5 presents an example of the application of the analysis to
estimate the uncertainty of 10◦/10◦ zigzag and 20◦ turning circle
test results. Section 6 contains discussion and conclusions.

2. Monte Carlo method

Consider the result Y predicted by a simulation model. The result
depends on the set of uncertain input factors X:

Y = f (X) (1)

Each of the input factors in X has an associated known probabil-
ity distribution. The goal of the Monte Carlo propagation method
is to estimate the uncertainty of Y due to the uncertainty of X. The
following algorithm describes the procedure:

1.) Generate a matrix A with numbers distributed randomly on
[0,1], with N rows and k columns, where N is a sufficiently large
number, k is the number of input factors in X. N defines the total
number of simulations.

2.) Apply the corresponding inverse cumulative distribution func-
tion to the samples of each column and compose a new matrix
X from the resulting numbers:

xji = CDF−1
i

(
aji

)
(2)

3.) Now, each row of the matrix X contains a set of input parameters
for (1). Perform the simulations for each row of X and calculate
the array of results Y according to (1).

4.) According to the central limit theorem [9], the result Y is dis-
tributed approximately normally if it is not dominated by a
single input factor. Therefore, calculate the standard deviation
� of Y and then calculate expanded uncertainty U95 by multi-
plying � by the coverage factor 2. In some cases, the resulting
distribution of Y is not close to a normal distribution. Then, to
find the 95% confidence interval, build the empirical CDF of Y
and find the lower and the upper border of the confidence inter-
val as the argument of the function, where it equals 0.025 and
0.975, respectively.

Thus, the Monte Carlo method provides the uncertainty of
the model output due to the uncertainty of the input factors X.
However, the method does not provide information regarding the
contribution of each individual input factor to the total uncertainty.

3. Global sensitivity analysis

In the Taylor series method of uncertainty propagation, the indi-
vidual contributions of the input factors’ uncertainty are calculated
as a part of the analysis. In the Monte Carlo method, it is not possible
to say directly which input parameters make the main contribution
to result uncertainty. However, this knowledge is very useful. It
increases confidence in the uncertainty analysis and helps to detect
faults or to improve the experiment.

We consider two  methods to assess the relative importance of
the input factors. The first method is graphical. According to the
method, one should plot the result Y versus the input factor Xi (this
will be illustrated in subsection 5.5, see Fig. 6). If the result changes
for different values of the input factor, or, in other words, a pattern
is observed, the parameter is important. The stronger the pattern
is, the more important the parameter is. The method is simple and
does not demand additional simulations. However, it does not give
any objective quantitative measure of the factor’s importance, and
it is not suitable for studying the joint effects of several interacting
factors.

The second method is based on variance decomposition. The fur-
ther description of the method closely follows [10,11]. The method
uses the concept of a sensitivity index as the measure of factors’
importance. There are first-order, joint and total effect sensitivity
indices. The first-order sensitivity index Si and the total effect STi of
the factor Xi are defined correspondingly as:

Si =
VXi (EX∼i (Y |Xi))

V (Y)
(3)

STi =
EX∼i (VXi (Y |X∼i))

V (Y)
= 1 − VX∼i (EXi (Y |X∼i))

V (Y)
(4)

where VXi(. . .),  EXi(. . .)  is the variance and the mean, respectively, of
the argument (. . .)  taken over Xi; VX∼i(. . .),  EX∼i(. . .)  is the variance
or mean of the argument (. . .)  taken over all factors but Xi; V(Y) is
unconditional variance. Thus, Si is the expected relative reduction
in variance V(Y) that would be obtained if Xi could be fixed; STi is
the expected relative variance that would be left if all factors but Xi
could be fixed. The joint sensitivity indices are defined by analogy,
for instance, for two  factors:

Sci,j =
VX ij (EX∼ij (Y |X ij))

V (Y)
(5)

The higher-order effects (interactions) are defined as the resid-
ual component as:

Sij = Sci,j − Si − Sj (6)

In fact, the unconditional variance can be decomposed as the
sum of the first-order and higher-order effects:

1 = V (Y)
V (Y)

=
∑
i

Si +
∑
i

∑
ji

Sij +
∑
i

∑
ji

∑
lj

Sijl + . . . + S12...k (7)

The total effect of the factor Xi contains all terms in (7) that
involve this factor, for instance:

ST1 = S1 + S12 + S13 + S123 + . . . (8)

To sum up the method, we  list important properties of the sen-
sitivity indices:
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