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a  b  s  t  r  a  c  t

Dealing  with  freely-floating  bodies  in the  framework  of  non-linear  potential  flow  theory  may  require
solving  Laplace’s  equation  for the time  derivative  of  the  velocity  potential.  At  present,  there  are two
competing  formulations  for  the  body  boundary  condition.  The  first one  was  derived  by  Cointe  [1]  in  2D.
It was  later  extended  to 3D  by van  Daalen  [2].  The  second  formulation  was derived  by  Tanizawa  [3] in
2D. It was  extended  to  3D  by  Berkvens  [4]. In  this  paper,  a  proof  is  given  that  the  Cointe–van  Daalen’s
and  the  Tanizawa–Berkvens’  formulations  are  equivalent.  It  leads  to a simplified  version  of  Cointe–van
Daalen’s  formulation.  The  formulation  is  validated  against  the analytical  solution  for  a moving  sphere  in
an unbounded  water  domain.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The first breakthrough for the simulation of non-linear waves in time domain came from the Mixed Euler Lagrande (MEL) method,
introduced by Longuet-Higgins and Cokelet [5]. Empowered by this approach, many numerical wave tanks (NWT) were developed, to
simulate non-linear wave propagation [6], plunging waves [7,8], overturning waves [9] in 2D or 3D. Simulations of wave diffraction on
bodies with fixed or prescribed motions were also possible [10,11]. The accurate evaluation of the time derivative of the velocity potential
on the body, giving the hydrodynamic pressure, could be done with a finite difference scheme in this particular case. However this scheme
leads to numerical instabilities when considering freely moving bodies [1,12] with explicit time-stepping schemes. Moreover, since the
hydrodynamic pressure was needed to solve the body motion equations, a method solving the mechanical and hydrodynamic problems
simultaneously was required.

Four methods were proposed along the years in order to cope with this difficulty. The modal decomposition was  first developed by
Vinje and Brevig [13] and further implemented by Cointe [14]. A second method is the iterative method, used by Sen [15] and Cao [16], and
based on a predictor-corrector loop to converge on the body accelerations. The indirect method was introduced by Wu and Eatock Taylor
[17] and used by Kashiwagi [11]. It is the only method that does not require solving the Laplace equation for the time derivative of the
velocity potential. However it solves directly the body motions without calculating the hydrodynamic force on the body. The last method
was introduced simultaneously by Tanizawa [3] and van Daalen [2] and is called the Implicit Boundary method. Further details on these
methods can be found in the previously mentioned references, but also in several reviews [18,12,19]. Except for the indirect one, the three
other methods require solving the Laplace equation for the time derivative of the velocity potential, the main difficulty lying in its body
boundary condition.

Two expressions were given for this body boundary condition. One was proposed by Cointe [14], first in 2D and later extended by van
Daalen [2] in 3D. The second was given by Tanizawa [3] in 2D, and Berkvens [4] in 3D. Even if both expressions are implemented in several
numerical flow solvers, their equivalence has not been proven yet. This paper will thus be dedicated to prove that these expressions are
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Fig. 1. Domain definition: boundaries and reference frames.

equivalent. The four expressions were moreover developed using different notations and reference systems that are not always explicited
in the references. We  thus provide here with a common ground for the comparison of those expressions.

The developments of both expressions are first provided, in 2D and 3D. The equivalence is then demonstrated, leading to a new unified
expression, simplifying Cointe–van Daalen ones by suppressing second order derivatives with already known variables, and thus ensuring
a more accurate estimation of the Body Boundary condition. A simple analytical case of a sphere in prescribed motion in an unbounded
water domain is finally applied to ensure that the body condition is correct.

2. Theory

2.1. Potential flow theory

Assuming a fluid to be incompressible and inviscid with irrotational flow, its flow velocity derives from a velocity potential � which
satisfies the Laplace Eq. [20]:

∇2�(x, y, z, t) = 0 (1)

in the fluid domain, D. The boundary of the fluid domain is ∂D = � = �fs ∪ �b ∪ �w ∪ �d, see Fig. 1.
In the general case, without forward speed, it can be shown [21] that the velocity potential is the solution of the following boundary

value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2� = 0 in the fluid domain D

∂�
∂t

= −g� − 1
2

∇� · ∇� on the free surface, �fs

∂�
∂t

= ∂�
∂z

− ∇� · ∇� on the free surface, �fs

∂�
∂n

= Vb · n on the body, �b

∂�
∂n

= 0 on the seabed, �d

� −→ 0 on boundaries far from the body, �w

(2)

The free-surface elevation is denoted by the single-valued variable �. g is the gravitational constant, Vb the body velocity and n the normal
vector pointing outsides from the fluid.

Using Green’s Second Identity, it can be shown that the resolution of the 3D Laplace equation in the fluid domain can be reduced to a
boundary value problem (BVP) for the velocity potential. For any point x ∈ D,

˛(x)�(x) =
∫
�

[
∂�
∂n

(xl)G(x, xl) − �(xl)
∂G
∂n

(x, xl)

]
d� (3)

where ˛(x) =
∫∫

�
∂G(x,xl)
∂n

d� is the solid angle from which the closed surface � is seen from point x ∈ ∂� and G(x, xl) is a Green function.
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