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a  b  s  t  r  a  c  t

A  finite  element  model  of  Boussinesq-type  equations  was  set  up,  and  a  direct numerical  method  is  pro-
posed  so  that  the  full  reflection  boundary  condition  is  exactly  satisfied  at a  curved  wall  surface.  The
accuracy  of the  model  was  verified  in tests.  The  present  model  was  used  to further  examine  cnoidal  wave
propagation  and  run-up  around  the cylinder.  The  results  showed  that  the  Ursell  number  is  a  nonlinear
parameter  that  indicates  the  normalized  profile  of cnoidal  waves  and  has  a significant  effect  on  the  wave
run-up.  Cnoidal  waves  with  the  same  Ursell  number  have  the  same  normalized  profile,  but  a  difference
in  the  relative  wave  height  can  still cause  differences  in  the  wave  run-up  between  these  waves.  The
maximum  dimensionless  run-up  was  predicted  under  various  conditions.  Cnoidal  waves  hold  entirely
distinct  properties  from  Stokes  waves  under  the  influence  of the water  depth,  and  the  nonlinearity  of
cnoidal  waves  enhances  rather  than  weakens  with  increasing  wavelength.  Thus,  the  variations  in the
maximum  run-up  with  the wavelength  for cnoidal  waves  are  completely  different  from  those  for  Stokes
waves,  and  there  are  even  significant  differences  in the  variation  between  different  cnoidal  waves.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Because of the important role of vertical cylinders in coast
and offshore engineering, wave diffraction around a vertical cylin-
der is an interesting problem that has long been investigated by
researchers. A three-dimensional analytical solution for the prob-
lem was initially derived by MacCamy and Fuchs [1] on the basis
of linear theory. However, many natural phenomena are diffi-
cult to predict with linear diffraction theory, which has prompted
researchers to seek nonlinear methods. Nonlinear waves have
entirely distinct properties at different water depths; thus, different
wave theories are applied to different ranges of the water depth.

For waves at a deep or finite water depth, the Stokes theory
is suitable. The diffraction of Stokes waves around a cylinder has
been further investigated by many groups. One approach has been
the analytical method. Researchers such as Raman et al. [2], Kim
and Yue [3], and Kriebel [4] have proposed second-order diffrac-
tion theories to predict wave run-up around a cylinder; others have
emphasized calculating the second-order wave forces on the cylin-
der, such as Lighthill [5], Molin [6], Demirbilek and Gaston [7], and
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Taylor and Hung [8]. The other approach has been numerical sim-
ulation. Isaacson and Cheung [9] and Bai and Teng [10] developed
time domain methods and set up numerical models to simulate
wave diffraction. Wave run-up around the cylinder can naturally
be obtained in a numerical simulation.

The properties of shallow-water waves can be described by
the cnoidal or solidary wave theory. In contrast to Stokes waves,
few analytical theories have been presented for the diffraction of
cnoidal waves around a cylinder. Isaacson [11] proposed a first-
order theory for this problem and then used it [12] to predict cnoidal
wave run-up distributions around cylinders, which he compared
with experimental data. The good agreement validated the theory.
Isaacson also examined the effect of the Ursell number on wave run-
up. The Ursell number is a parameter that indicates the normalized
profile of cnoidal waves and is defined as Ur = (H/d)/(kd)2, where H is
the wave height, d is the water depth, and k is the wave number. The
first-order approximation was not suitable for further investiga-
tion; thus, Isaacson did not examine whether cnoidal waves of the
same normalized profile (i.e., the same Ursell number) have differ-
ent dimensionless run-up distributions owing to differences in the
relative wave height H/d. Later, for wave diffraction around a cylin-
der in shallow water, some researchers such as De Vos et al. [13]
and Lykke Andersen et al. [14] improved empirical formulae on the
basis of physical model studies, and other researchers used numer-
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ical models to do studies. These numerical models are generally
based on Boussinesq-type equations.

Boussinesq equations are the most effective mathematical tool
for describing phenomena of shallow-water waves. The form of the
equations applicable to varying topography was  originally derived
by Peregrine [15]. Many researchers subsequently improved the
equations in order to make them applicable to deeper water. Rep-
resentative works include those by Madsen and Sørenson [16],
Nwogu [17], Beji and Nadaoka [18], Madsen and Schäffer [19],
Agnon et al. [20], Madsen et al. [21–23], Chazel et al. [24], and Kim
et al. [25]. In addition, Wei  et al. [26] and Gobbi et al. [27] presented
fully nonlinear Boussinesq equations. In general, Boussinesq-type
equations comprise a mass conservation equation and two momen-
tum equations in the x and y directions to handle the velocity
components (u, v) in those directions. Problems are usually sim-
plified from three dimensions to two dimensions with Boussinesq
equations.

By using numerical models based on Boussinesq-type equations,
researchers have simulated shallow-water wave diffraction around
cylinders. However, the emphasis has been on the features of the
resulting wave field. Wang et al. [28], Woo  and Liu [29], Ning et al.
[30], and Kazolea at al. [31] all simulated a wave field resulting
from a solitary wave passing a cylinder and described its features.
Sun et al. [32] and Liu et al. [33] used Boussinesq equation models
to investigate the diffraction of irregular waves around cylinders.
Jiang and Wang [34], Wang and Ren [35], Li et al. [36], and Zhao et al.
[37] have investigated cnoidal waves. However, the former two
focused on the features of the resulting wave field. Only the latter
two presented a cnoidal wave run-up envelope around a cylinder,
but the comparisons with laboratory data were not satisfactory. To
our knowledge, no researchers have entirely examined the effect of
wave nonlinearity on cnoidal wave run-up around a cylinder until
now. This problem, which was not solved by Isaacson [12], has not
yet been addressed. Therefore, it became the main objective of the
present study.

One reason for the few investigations into cnoidal wave run-up
around a cylinder may  be that the treatment of the boundary condi-
tion on the cylinder surface is not adequate in Boussinesq equation
models. Errors allowed when describing the resulting wave field
may still cause problems when examining the wave run-up. In
order to accurately calculate the wave run-up, the full reflection
condition (i.e., normal velocity is zero) must be satisfied exactly on
the cylinder surface. The above researchers took different measures
to implement the full reflection condition at curved wall surfaces.
The finite difference method is not flexible with regard to this prob-
lem. With a Cartesian grid, a stepwise approximation of the curved
boundary is inevitable, which is certain to introduce large errors. An
alternative method is to use an orthogonal grid, as done by Jiang
and Wang [34] and Wang and Ren [35]. This can exactly repre-
sent the cylinder surface, but it is extremely difficult to map  such
an orthogonal grid for complicated geometry. In the finite volume
method, the treatment of the boundary condition is rather com-
plex at curved boundaries, and boundary fluxes must be modified
at each time step, whether with a Cartesian grid as by Ning et al.
[30] or with an unstructured grid as by Kazolea et al. [31]. The finite
element method is also suitable for unstructured grids and easier
to use to set up numerical models than the finite volume method.
According to Engelman et al.’s [38] general technique, the finite ele-
ment method seems to be more convenient for implementing the
full reflection condition at curved wall surfaces in fluid problems
through coordinate transformation. Certainly, a specific method for
finite element models of Boussinesq-type equations still needs to
be developed. Li et al. [36], Woo  and Liu [29], Sun et al. [32], Liu
et al. [33] and Zhao et al. [37] have all published specific methods.
Except for the last group of researchers, who used a potential func-
tion to represent the boundary condition with a unique equation,

all of these groups applied an iterative process between the x- and
y- direction momentum equations to make the boundary condi-
tion approximately satisfied at curved wall surfaces. Zhao et al.’s
method is markedly different from the others because their gov-
erning equations are in terms of the velocity potential instead of
the velocity. However, a comparison of their predicted wave run-
up distributions around a cylinder with Isaacson’s [12] analytical
solution indicated that these treatments are not satisfactory.

To deal with the problems of curved boundaries, we applied
a finite element method to set up a numerical model based on
Beji and Nadaoka’s [18] improved Boussinesq-type equations and
improved the handling of the full reflection condition so the bound-
ary condition is satisfied fully rather than approximately at curved
wall boundaries. Moreover, the present model also completely sat-
isfies the additional full reflection condition (i.e., normal derivative
of the wave elevation is zero). The good agreement between the
cnoidal wave run-up distributions of the present prediction and
Isaacson’s analytical solution for different cylinders demonstrated
that the improvement is successful.

Using this model, we  examined the influence of wave nonlin-
earity on cnoidal wave run-up around a vertical circular cylinder.
Isaacson [12] used first-order approximation to show that cnoidal
waves with the same Ursell number hold the same wave non-
linearity with the same normalized profile. However, we further
examined whether there is still a difference in the dimensionless
wave run-up between these waves with the same Ursell number
owing to differences in the relative wave height. In addition, dimen-
sionless amplitudes of the maximum run-up were predicted under
different conditions. The effects of the wave height and the wave-
length on the maximum run-up of cnoidal waves on a cylinder
were clearly demonstrated. Note that the variation in the maxi-
mum  run-up with the wavelength is distinctly different from that
for Stokes waves, and there is even a significant difference in the
variation between cnoidal waves with different nonlinearity. This
indicates that cnoidal waves have distinct properties from Stokes
waves because of the strong influence of the water depth.

2. Numerical model

2.1. Governing equations

The present work was  based on the improved Boussinesq equa-
tions derived by Beji and Nadaoda [18]. In the Cartesian coordinate
system (x, y), the mass conservation equation is

�t + ∇ · [(d + �)u] = 0, (1)

and the momentum conservation equation in vector form is
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where u = (u, v) is the two-dimensional depth-averaged velocity
vector, �(x, y) is the water surface elevation, d(x, y) is the water
depth, g is the acceleration of gravity, � = (∂/∂x, ∂/∂y) is the two-
dimensional gradient operator,  ̌ is a parameter for adjusting the
accuracy of the linearized dispersive relation of the equations, and
the subscript t denotes the time derivative. Li et al. [36] verified
that the optimum linearized dispersive relation can be obtained at

 ̌ = 1/5 up to the Padé [2, 2] approximant of the linear dispersion
relation.

In order to avoid calculating the third-order spatial derivatives
of the wave profile, we  introduce two auxiliary variables: a = ∂�/∂x
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