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a  b  s  t  r  a  c  t

Dobrovol’skaya  [1]  presented  a  similarity  solution  for the  water  entry  of  symmetrical  wedges  with  con-
stant  velocity.  The  solution  involves  an  integral  equation  that  becomes  increasingly  harder  to  numerically
solve  as  the deadrise  angle  decreases.  Zhao  and  Faltinsen  [2]  were  able  to present  reliable  results  for  dead-
rise angles  down  to  4◦.  In  this  paper,  Zhao  and  Faltinsen’s  results  are  improved  and  reliable  results  for
deadrise  angles  down  to  1◦ are  confirmed  by comparing  to  the  asymptotic  solutions  at  small  deadrise
angles  and  the solutions  by  the  traditional  boundary  element  method  at relatively  large  deadrise  angles.
The  present  similarity  solution  results  provide  a reference  solution  in theoretical  studies  of  water  entry
problems  and  in  developing  accurate  numerical  solvers  for simulating  strongly  nonlinear  wave–body
interactions,  which  flows  are  governed  by Laplace  equation  or  Euler  equation.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Solid objects entering through a water (liquid) surface often
involves large unsteady hydrodynamic loads and rapid deformation
of free surface and is therefore of great interest to the design of ship
bows, lifeboats, planning vessels, high-speed seaplanes, surface-
piercing propellers and offshore or coastal structures. Wagner [3]
studied water entry of wedges. He accounted for the local uprise of
the water and presented details of the flow at the spray roots, which
included predictions of maximum pressure. Wagner’s first-order
outer-domain solution does not include the details at the spray
roots and overestimates the vertical hydrodynamic forces. For finite
deadrise angles � as defined in Fig. 1, Wagner used a flat-plate
approximation, which leads to pressure singularities at the plate
edges. Cointe and Armand [4] and Howison et al. [5] used matched
asymptotic expansions to combine Wagner’s inner-flow-domain
solution at a spray root with an outer-flow-domain solution. In
that way, the pressure singularities at the spray roots are removed.
Cointe [6] studied also the jet domain and presented predictions
of the angle between the free surface and the body surface at the
intersection point for water entry of a wedge with constant entry
velocity. The theoretical model by Cointe and Armand [4] or How-
ison et al. [5] only gives satisfactory solution for small deadrise
angles. Faltinsen [7] studied water entry of wedges with larger
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deadrise angles. He accounted for the deadrise angle in constructing
the outer domain solution, which results in significant improve-
ment of the asymptotic solution for larger deadrise angles. The
previously mentioned theoretical models give approximate analyt-
ical solutions for two-dimensional problems. By neglecting gravity,
Dobrovol’skaya [1] presented the similarity solution, which exactly
represents the water entry of symmetrical semi-infinite wedges
with constant velocity within the framework of potential flow of
incompressible liquid. Semenov and Iafrati [8] obtained similarity
solutions for the water entry of asymmetric wedges without flow
separation. For three-dimensional problems, Faltinsen and Zhao [9]
presented asymptotic solutions for water entry of axisymmetric
bodies; Scolan and Korobkin [10] presented exact analytical solu-
tions to the Wagner problem; Wu  and Sun [11] found the existence
of similarity solutions in the case of an expanding paraboloid enter-
ing water.

Dobrovol’skaya’s similarity solution is applicable for any dead-
rise angle. Its existence and uniqueness has been proved by
Fraenkel and Keady [12]. The similarity solution has been widely
used for a reference solution in theoretical studies of water
entry problems and also in developing accurate numerical solvers
for simulating strongly nonlinear wave–body interactions, for
instance, by Mei  et al. [13], Söding [14], Semenov and Iafrati [8],
Wu [15] and Wang and Faltinsen [16]. When used as a reference
solution, the similarity solution results should be accurate. The
similarity solution is represented by a nonlinear singular integral
equation, which is very difficult to solve. The challenges increase
with reducing the deadrise angle, because smaller deadrise angles
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Fig. 1. Coordinate system and sketch of a wedge symmetrically entering into calm
water. ˛0 is half of the wedge angle; � is the deadrise angle; ˇ0 is the angle between
the body surface and the water surface at the intersection point B.

result in thinner and longer jet flows. Dobrovol’skaya [1] only pre-
sented results for deadrise angles equal to and larger than 30◦.
Zhao and Faltinsen [2] pointed out that Dobrovol’skaya [1]’s results
for the deadrise angle of 30◦ are not accurate. They improved
Dobrovol’skaya’s results and obtained results in a wider range of
deadrise angles (down to 4◦). However, there was non-negligible
discrepancy in the pressure distribution on the wedge surface
when compared with the results by the boundary element method
(see [2], Fig. 6). Due to numerical challenges, results for deadrise
angles smaller than 4◦ have not been obtained yet. In this paper, a
nested iterative method based on quasi-dynamic under-relaxation
is proposed to derive accurate results of Dobrovol’skaya’s similarity
solution. By employing this method, we successfully obtained simi-
larity solution results for deadrise angles down to 1◦. The numerical
error of the present similarity solution results has been estimated.
The accuracy of the results is further confirmed by comparing to
the asymptotic solutions at small deadrise angles and the solu-
tions by the traditional boundary element method at relatively
large deadrise angles. The present similarity solution results agree
well with the asymptotic solutions at small deadrise angles and
the discrepancy between the two solutions tends to vanish with
decreasing the deadrise angle, which are expected when com-
paring well-developed asymptotic solutions to exact solutions. At
relatively large deadrise angles, the present results coincide with
those obtained by the traditional boundary element method, which
improve Zhao and Faltinsen [2]’s results. The assumptions of the
similarity solution must be kept in mind, such as a semi-infinite
wedge is considered. It is noted that, at small deadrise angles, the
airflow will cause the free surface to raise at the chines if the wedge
is rigid with a finite length. The consequence is that air cavities are
formed under the wedge bottom. However, there is more to it than
that. Hydroelasticity will in practice matter [17]. Furthermore, liq-
uid compressibility can matter for small deadrise angles. Anyway,
it is important that numerical solvers are challenged in their test-
ing phase. For this purpose, the accurate similarity solution results
at small deadrise angles are good reference solutions to be used.
They also provide good reference solutions for theoretical studies
of water entry problems.

2. Mathematical model

2.1. Governing equation

To model the symmetrical entry of a semi-infinite wedge into
the initially calm water, a Cartesian coordinate system is intro-
duced: the x-axis is along the undisturbed water surface; the y-axis
is along the body axis of symmetry and positive upwards. The coor-

dinate system and sketch of the water entry problem are shown in
Fig. 1.

The air flow is neglected. In case that the entry velocity is not
high enough to make acoustic effects relevant, it is appropriate to
assume that the water is incompressible after a very early stage
[18]. Because of the short duration of impact, viscous effects are
negligible provided that the Reynolds number is large. Further, the
flow is irrotational as there is no initial vorticity. Therefore, a veloc-
ity potential ϕ(x, y, t) of incompressible liquid satisfying Laplace’s
equation

∂2
ϕ

∂x2
+ ∂

2
ϕ

∂y2
= 0 (1)

is introduced. The kinematic free-surface condition is that a water
particle remains on the free surface. The dynamic free-surface
condition is that the water pressure is equal to the constant atmo-
spheric pressure (surface tension is neglected). On the body surface,
the normal velocity of the water is equal to that of the wedge body.

2.2. Similarity solution

Dobrovol’skaya [1] has presented similarity solutions for the
water entry of symmetrical wedges with constant velocity. In the
similarity flow, the velocity potential has the form

ϕ(x, y, t) = v2
0t�(�, �), (2)

where v0 is the velocity of the wedge, � = x/v0t, � = y/v0t and �(�,
�) is a time-independent harmonic function. The function �(�, �)
has to satisfy the kinematic free-surface condtion, the dynamic
free-surface condition and the body-surface condtion, which are
expressed as
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respectively. The flow under consideration is then represented as
a boundary-value problem. By using Wagner’s h-function [3], the
boundary-value problem can be reduced and solved by finding the
solution of the nonlinear singular integral equation
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where  ̨ = ˛0/� (see Fig. 1) and
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Once the function f(s) is determined, the hydrodynamic problem
can be considered as solved. Dobrovol’skaya [1] presented the free-
surface elevation in terms of f(s):
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where the constants c and �B have the form
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