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a  b  s  t  r  a  c  t

Vessels  operating  in  shallow  waters  require  careful  observation  of the  finite-depth  effect.  In present  study,
a Rankine  source  method  that  includes  the  shallow  water  effect  and  double  body  steady  flow effect  is
developed  in  frequency  domain.  In order  to verify  present  numerical  methods,  two  experiments  were
carried  out respectively  to  measure  the  wave  loads  and  free  motions  for ship  advancing  with  forward
speed  in  head  regular  waves.  Numerical  results  are  systematically  compared  with  experiments  and  other
solutions  using  the  double  body  basis  flow approach,  the Neumann-Kelvin  approach  with  simplified  m-
terms,  and  linearized  free  surface  boundary  conditions  with  double-body  m-terms.  Furthermore,  the
influence  of  water  depths  on added  mass  and  damping  coefficients,  wave  excitation  forces,  motions  and
unsteady  wave  patterns  are  deeply  investigated.  It is found  that  finite-depth  effect  is important  and
unsteady  wave  pattern  in shallow  water  is dependent  on  both  of the  Brard  number  �  and  depth  Froude
number  Fh.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

With the increasing activities of vessels operating in shallow
waters, much attention is paid to the determination of the behav-
ior of a ship due to waves in finite depth. Knowledge to predict the
seakeeping performance of a ship in such water depth is impor-
tant for naval architects, ship owners, harbor authorities and harbor
designers, especially due to the fact that the scale enlargement in
the maritime fleet and the rapid development of large floating-type
offshore structures.

Ship motions are directly affected in two ways by the restricted
water depth (see Yuan et al. [1]): (1) the incident waves are changed
and as a result, the wave exciting forces exerted on ship differ from
those in deep water; (2) the hydrodynamic coefficients of the ship
are changed by the nearness of the sea bottom. As for these topics,
many solution schemes have been introduced, such as strip theory
method (Tuck [2], Chu [3], Tasai et al. [4], Andersen [5], Perunovic
et al. [6]), a unified theory (Kim [7]). Because the strip method has
a computational time advantage, it is still widely used for practical
purposes. Nevertheless, the limitations of 2D potential theories are
well documented and usually overestimate the coupled motions
in resonance frequency; and researchers suggested that methods
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including the three-dimensional effect in the solution of the strip
method, showing a significant improvement in accuracy.

Nowadays, three-dimensional panel method programs in time
domain and frequency domain that include the finite-depth effect
based on Green functions satisfying the linearized free surface con-
ditions or Rankine source are available, such as, Li [8], Kim and Kim
[9], Oortmerssen [10], Grant and Holboke [11], Clauss et al. [12],
Fonseca et al. [13], Yuan et al. [1], Xiong et al. [14] and Feng et al.
[15]. Because the panel method constitutes a whole domain with
panels, it can formulate an arbitrary bottom topology if waves can
be modeled appropriately. The predicting accuracy is better than
that of the 2-D method because the 3D fluid hydrodynamic effects
are taken into account. Among these methods, the pulsating source
Green function method satisfies the zero speed linearization free
surface condition and the speed effects on the free surface neglects
interactions between the motions of oscillation and translation; 3-
D translating-pulsating source Green function in finite water depth
is complex to describe and evaluate (see Takagi [16]).

In contrast, the Rankine source method is more proper to ana-
lyze seakeeping performance of a ship advancing in finite water
depth in seaways. This approach for deep water case has been used
by many investigators since it has been first proposed by Hess and
Smith [17]. Such as Sclavounos and Nakos [18], Kring [19], He et al.
[20], Shao et al. [21], Das and Cheung [22,23], Yuan et al. [24,25]. But
there are still some issues should be paid attention to. First of all,
the Rankine source method requires much more panels which will
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Fig. 1. Coordinate systems.

considerably increase the computation time. However, with the
development of computer and technology of parallel computing,
the computation time might be acceptable for practical application.
Besides, the Rankine source method requires a suitable radiation
boundary condition to account for the scattered waves in current.
Two methods to model this problem are popular. One is so-called
upstream radiation condition, which was proposed by Nakos [26].
The free surface was truncated at some upstream points, and a qui-
escent boundary condition was imposed at these points to ensure
the consistency of the upstream truncation of the free surface.
Another method is to move the source points on the free surface
at some distance downstream (Jensen et al. [27], Iwashita [28] and
Elangovan et al. [29]). Recently, Das and Cheung [22,23] provided
an alternative solution to the boundary-value problem, who cor-
rected the Sommerfeld radiation condition by taking into account
the Doppler shift of the scattered waves at the control surface
that truncates the infinite fluid domain. And the validation of this
new form of radiation condition has been confirmed by Yuan et al.
[1,24,25].

In present study, a Rankine source panel method taking the
effect of steady flow based on Das and Cheung’s radiation con-
dition is developed to analyze motion, wave loads and unsteady
wave patterns of a ship advancing in shallow water. By comparing
the experimental data with various numerical results, validation of
the present method can be obtained. Further, the influence of water
depths on ship hydrodynamic characteristics was analyzed.

2. Mathematical formulation

2.1. Coordinate system

Let o-xyz be the right-hand Cartesian coordinate system moving
together with the hull, with xoy plane on the mean free surface. The
origin is located on the still water plane, and the x-axis is positive
in the direction of the speed u0 of the ship. The z-axis is positive
upward as shown in Fig. 1.

2.2. Velocity potentials

The regular incident wave is coming from a direction with an
angle ˇ, which is the angle between the positive x-axis and the
incident wave direction. Thus 180◦ means heading sea. The incident
potential ˚0 is given as below,

˚0(x, y, z, t) = �0e
−iωet (1)

�0 = − igς
ω0

cosh k0(z + h)
cosh k0h

eik0(x cos ˇ+y sin ˇ) (2)

Where k0 tanh k0h = ω2
0/g is wave number of the incident wave,

ω0 and ς are the frequency and amplitude. ωe is the encounter fre-
quency. The fluid is assumed ideal and incompressible of constant
density. The irrotational flow is assumed throughout, and the sur-
face tension effects are neglected. The velocity potential ˚T(x, y, z,
t) is introduced and can be written as,

˚T (x, y, z, t) = −u0x + �s(x, y, z) + ˚(x, y, z, t) (3)

Where �s and  ̊ are the steady disturbance potential and unsteady
potential, respectively. In the first order problem, all unsteady
motions are assumed to be sinusoidal in time with the encounter
frequency ωe, and by the linear decomposition, the unsteady poten-
tial  ̊ can be expressed in the form as below,

˚(x, y, z, t) = ˚R + ˚7 + ˚0 = (�R + �7 + �0)e−iωet

=

⎡
⎣ 6∑
j=1

(�j�j) + �7 + �0

⎤
⎦ e−iωet (4)

Here ˚R and ˚7 are the coupled radiation and diffraction potentials
in the field; �R and �7 are the time-independent part of them; �j is
the j-th mode motion of ship, the values of j = 1,. . .,  6, corresponding
to the order of surge, sway, heave, roll, pitch and yaw. �j is radiation
velocity potential due to per unit amplitude motion in the j-th mode
of ship.

2.3. Boundary conditions

2.3.1. Boundary conditions for steady potential
The steady potential �s, which accounts for the near-field

modification of the uniform current, is important to wave scat-
tering around non-slender vessels with a forward speed U. In the
boundary-value problem, it satisfies the zero flux condition on the
still water surface at z = 0, the seabed at z = −h, and the body surface
as,

∇2�s = 0 (5)

∂�s
∂n

= 0 at  z = 0 and z = −h (6)

⇀
W ·⇀n = 0 at SB (7)

Where
⇀
W = ∇(�s − u0x). According to Das and Cheung [22], in this

so-called double-body flow, ∇�s attenuates rapidly and �s becomes
a constant away from the body. Both are set equal to zero at the
control surface to complete the boundary-value problem.

2.3.2. Boundary conditions for unsteady potential
The unsteady perturbation potential �j can be solved by the

following boundary value problem:

∇2�j = 0 (8)

in the fluid domain

−ω2
e �j − 2iωeu0

∂�j
∂x

+ u2
0

∂
2
�j

∂x2
+ g
∂�j
∂z

− iωe∇2
1�s�j − 2iωe∇1�s · ∇1�j

=

{
0 (j = 1, ..., 6)

iωe∇2
1�s�0 + 2iωe∇1�s · ∇1�0 (j = 7)

(9)

on the undisturbed free surface Sf . ∇1 is the horizontal gradient
operator.

∂�j
∂n

=
{−iωenj + mj, j  = 1, 2, ..., 6

−∂�0

∂n
, j  = 7

(10)

on the mean wetted part of the body surface Sb. And the so-called
m-terms are defined as

(m1, m2, m3) = −(
⇀
n · ∇)∇(�s − u0x) (11)

(m4, m5, m6) = −(
⇀
n · ∇)[

⇀
r × ∇(�s − u0x)] (12)
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