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a  b  s  t  r  a  c  t

A  fast  time-domain  method  is  developed  in this  paper for the  real-time  prediction  of  the  six  degree  of
freedom  motions  of  a vessel  traveling  in  an  irregular  seaway  in infinitely  deep  water.  The  fully  coupled
unsteady  ship  motion  problem  is  solved  by time-stepping  the  linearized  boundary  conditions  on  both  the
free  surface  and body  surface.  A  velocity-based  boundary  integral  method  is  then  used  to solve  the  Laplace
equation  at  every  time  step  for  the fluid  kinematics,  while  a scalar  integral  equation  is solved  for  the total
fluid  pressure.  The  boundary  integral  equations  are  applied  to both  the  physical  fluid  domain  outside
the  body  and  a fictitious  fluid  region  inside  the  body,  enabling  use of the  fast  Fourier  transform  method
to  evaluate  the  free  surface  integrals.  The  computational  efficiency  of  the  scheme  is  further  improved
through  use  of  the method  of  images  to  eliminate  source  singularities  on the  free  surface  while  retaining
vortex/dipole  singularities  that  decay  more  rapidly  in space.  The  resulting  numerical  algorithm  runs  2–3
times  faster  than  real time  on a standard  desktop  computer.  Numerical  predictions  are  compared  to  prior
published  results  for the transient  motions  of a hemisphere  and  laboratory  measurements  of  the motions
of a free  running  vessel  in  oblique  waves  with  good  agreement.
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1. Introduction

Technological advances in the real-time measurement of ocean
wave conditions with remote sensing devices have led to a growth
in the need for fast techniques to predict ship/platform motions in
real-time aboard ships and oil platforms [1–4]. The motion forecasts
could be used to provide ship/platform operators advance warning
of dangerous motions; evaluate in real-time the optimal path of
manned/unmanned vessels to mitigate vessel motions; and design
real-time motion compensation systems for ships, ocean platforms
or wave energy devices.

Numerical methods based on boundary integral equations are
often used to simulate transient wave-body interaction. An early
formulation by Finkelstein [5] utilized a time-dependent Green’s
function that satisfies the linearized free surface boundary con-
ditions. The source strengths are then determined to satisfy the
kinematic boundary condition on the body surface. Practical three-
dimensional computation of ship motions with a time-dependent
Green’s function were later obtained by a number of investigators
[6–10].
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Nonlinear wave effects on ship motions can be included by uti-
lizing the simpler free space Green’s function (Rankine source) and
time-stepping the boundary conditions on the free surface. Several
numerical methods have been developed along this line including
Isaacson [11], Beck et al. [12], Kring et al. [13] and Liu et al. [14].
The Rankine panel method typically leads to a large matrix that is
computationally expensive to invert since the free surface has to
be discretized in addition to the body surface. Several accelerated
methods have been developed to speed up the computations such
as the multipole expansion method [15] and the pre-corrected FFT
method [16].

Mixed spectral-panel methods have also been developed for
solving transient wave–body interaction problems. Chapman
[17,18] pioneered this approach by combining a discrete Fourier
series representation of the free surface velocity potential with
a panel method for the body motion potential. The Green’s func-
tion for the body potential was chosen to satisfy the equipotential
condition on the mean free surface. Chapman [18] reported good
results for the heaving motions of a hemisphere although use of
a pure spectral method with implicit periodic boundary condi-
tions makes it difficult to enforce the radiation boundary condition
for the scattered waves. Chapman’s approach was  also restricted
to small-amplitude waves. An alternative spectral formulation for
wave-body interaction problems that allows for higher-order non-
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linear wave effects is based on the pseudo-spectral approach. In
contrast to pure spectral methods that evaluate the governing
equations in Fourier space, the pseudo-spectral method evaluates
linear terms in Fourier space and nonlinear terms in physical space.
Pseudo-spectral methods have successfully been used to investi-
gate nonlinear wave interaction with submerged bodies [19–21].

Another variant of the spectral-panel method is the FFT-
accelerated boundary integral method developed by Nwogu [22]
for nonlinear water wave propagation. For non-overturning waves,
the kernels of the free surface boundary integrals are expanded in
a wave steepness parameter and efficiently evaluated with FFTs.
Nwogu and Beck [23] extended this approach to surface-piercing
bodies of arbitrary shape by applying the boundary integral equa-
tions to both the physical fluid domain outside the body and a
fictitious fluid region inside the body. The FFT method is then used
to evaluate the integrals over the free surface in both the inte-
rior and exterior regions while the integrals over the body surface
are evaluated using a panel method. Preliminary results were pre-
sented by Nwogu and Beck [23] for linear wave diffraction by a
vertical circular cylinder.

In this paper, the FFT-accelerated boundary integral method is
further extended to simulate the 6-dof motions of moving vessels
in multidirectional wave fields. The coupled equations of motion
for the free surface and body are simultaneously integrated using a
fractional-step method. The velocity/pressure formulations of the
equations of fluid motion are used with separate boundary integral
equations solved at each time step for the fluid kinematics and total
pressure. The mixed spectral-panel method is initially validated
with prior published data on the forced oscillations and transient
motions of a floating hemisphere. The numerical model is then used
to predict the transient motions of a self-propelled vessel in oblique
waves and compared to data from laboratory experiments.

2. Mathematical formulation

2.1. Equations of body motion

Consider a vessel traveling with speed U(t) in a multidirectional
wave field in infinitely deep water. The body motions are defined in
terms of three translational (surge, sway, heave) and three angular
rotations (roll, pitch, yaw) about a body-fixed coordinate system
with origin at its center of gravity G and oriented along the principal
axes of inertia of the body. The six degrees of freedom equations
for rigid body motion can be written as:

[m]{V̇b} = F (1)

[I]{�̇b} = M (2)

where [m] is the mass matrix, [I] is moment of inertia matrix, Vb
is the translational velocity in the body-fixed (x̃, ỹ, z̃)  directions
and �b is the angular velocity vector in the body axis. The invis-
cid hydrodynamic force F and moment M vectors are obtained by
integrating the fluid pressure p over the wetted body surface:{

F

M

}
=

∫
SB

p

{
n

x̃ × n

}
dS (3)

where n(x̃, ỹ, z̃)  is an inward unit normal vector on the body surface
in the body-fixed coordinate system.

2.2. Equations of fluid motion

The equations governing the fluid motion are defined in a right-
handed Oxyz coordinate system traveling with the ship with its
origin at the still water level vertically in line with the ship’s center
of gravity, G. The x-axis is assumed to point toward the ship’s bow
while the z-axis is measured vertically upwards as shown in Fig. 1.

Fig. 1. Definition sketch.

The fluid is assumed to be inviscid and incompressible with the fluid
motion irrotational. The governing equations for the fluid motion
are the continuity equation for the conservation of mass and Euler’s
equations of motion for the conservation of momentum:

∇ · u = 0 (4)

∂u

∂t
+ ∇P = 0 (5)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z), u = (u, v, w) is the three-dimensional
velocity field, P = p/� + u · u/2 + gz is the total pressure, p is the
local fluid pressure, � is the fluid density and g is the gravita-
tional acceleration. We  assume small-amplitude incident waves
and decompose the total pressure and velocity fields into compo-
nents associated with the incident and scattered waves, resulting
in:

P = P(I) + P(S); u = U + u(I) + u(S) (6)

The effect of the forward speed of the vessel is included in the
velocity field as an imposed current U = (−U, 0, 0).

2.2.1. Boundary value problem for pressure
The governing equation for the total scattered pressure over the

fluid domain is the Laplace equation which is obtained by taking
the divergence of the Euler equation (Eq. (5)):

∇2P(S) = 0 (7)

The total scattered pressure field has to satisfy boundary condi-
tions on the free surface SF, body surface SB and far-field boundary
S∞. Given that p = 0 on the free surface z = �, the linear boundary
condition for the total scattered pressure on SF can be written as:

P(S) = g� + U · u(S) (8)

The pressure boundary condition on the body surface is obtained
by taking the dot product of the Euler equation (Eq. (5)) with a unit
normal vector on the body surface:

n · ∇P(S) = −n  · ∂u

∂t

(S)

(9)

where n(x, t) is a unit inward normal vector on the body surface in
the hydrodynamic reference frame. Since the fluid pressure needs
to be calculated at points fixed on a moving body surface, it is
more convenient to evaluate the time derivative in the body-fixed
coordinate system:

n · ∂u

∂t

(S)

= n · du

dt

(S)

− n · [((Vb + �b × x̃) · ∇)u(S)]

= d(u(S) · n)
dt

− u(S) · dn

dt
− n · [((Vb + �b × x̃) · ∇)u(S)]

(10)
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