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We  have  employed  laboratory  and  numerical  experiments  in  order  to investigate  propagation  of waves
in both  long  and  short-crested  wave  fields  in deep  water.  For  long-crested  waves  with  steepness,
� =  kcac =  0.1  (a fairly  extreme  case),  reliable  prediction  can  be performed  with  the  modified  nonlinear
Schrödinger  equation  up  to about  40  characteristic  wavelengths.  For  short-crested  waves  the  accuracy
of prediction  is strongly  reduced  with  increasing  directional  spread.
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1. Introduction

Predictions are needed in many areas of science and technology.
Applications range from the weather forecast to the financial mar-
ket and the height of the incoming waves that hit you in the sea.
If we should propose a rough categorization one could say that the
prediction is stochastic if repeated cases with the same input give
different output due to some inherent randomness in such mod-
els. If identical input produces the same output one may  talk about
deterministic prediction. Deterministic prediction reaches the final
state from the initial state by applying a deterministic propagation
operator.

The physics of ocean waves has been thoroughly studied for
many years, and provides an excellent basis both for stochastic and
deterministic prediction on various spatial and temporal scales. In
particular, the surface is weakly nonlinear with the leading order
contribution being a space/time Gaussian field. Analysis of surface
wave problems has led to a large number of nonlinear wave equa-
tions, some of which are used as propagators in the deterministic
predictions studied below.

Dynamic positioning of vessels during sensitive offshore opera-
tions such as float-over installation, equipment lifting, LNG loading
connection, ROV operations and helicopter take-off and landing
will benefit from a real-time prediction of the local wave condi-
tions in an order of seconds to a few minutes ahead. Real time
prediction could also warn against freak waves and could enable
a helmsman to decide how to maneuver vessels during danger-
ous situations within a limited time horizon (e.g. [4–6]). Another
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important application is enhanced extraction of ocean wave energy,
where the real-time dynamic control of floating wave energy con-
verters can benefit from the possibility of real-time prediction of
excitation force into the future [10].

The majority of existing commercial systems rely on linear
wave theory for prediction of the encountering waves. Obtain-
ing input data in the open ocean with the quality demanded by
nonlinear wave propagation models is currently not an easy task.
Nevertheless, it is possible to obtain high quality input data in a
wave basin, for instance, with arrays of several wave probes [21].
Much work has been done to validate nonlinear wave propaga-
tion models with long-crested wave experiments in a laboratory.
Shemer et al. [26] studied evolution of unidirectional nonlinear
wave groups in a wave tank with the cubic Schrödinger (NLS) equa-
tion [13,44]. They observed in deep as well as in relatively shallow
water experiments that the NLS equation is able to capture the
overall features of nonlinear wave group evolution. Trulsen and
Stansberg [40] applied both the NLS and the modified nonlinear
Schrödinger (MNLS) equation [8,38] in order to investigate the spa-
tial evolution of unidirectional bichromatic waves in a wave tank
for deep water. Certain wave properties, which could not be ade-
quately described by the NLS, were successfully captured by the
MNLS. They suggested that the MNLS can be used to predict the
evolution of long-crested waves at least up to the dimensionless
fetch �2kcx = 3 compared to �2kcx = 1 for NLS and linear wave theory,
where kc is the characteristic wavenumber and x is the evolution
distance. Trulsen [36,37] later extended the consideration to evo-
lution of irregular waves. The overall conclusions were similar to
[40], the main difference being reduced prediction horizon for the
irregular wave experiments. Moreover, Trulsen [36] suggested a
theoretical prediction range of the MNLS equation for various sea
states.
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Unlike many other nonlinear wave propagation models,
Schrödinger equations are computationally efficient, but at the cost
of a constraint in the spectral bandwidth. This prompted Shemer
et al. [27,28] to investigate evolution of an initially broad spec-
trum that formally violates the assumptions behind the derivation
of (M)NLS. They compared experimental results with simulations
based on the unidirectional Zakharov equation [44] accurate to the
third-order (fourth-order) in wave steepness and the NLS (MNLS)
equations. For a sufficiently narrow spectrum, the Schrödinger
equation yields good agreement with the Zakharov equation.
However, for relatively broader initial spectrum the accuracy
degenerates compared with the Zakharov equation, which is free of
bandwidth constraints. A recent comparison between experiments
of broad-banded unidirectional waves and the Zakharov equation
show satisfactory agreement [25] suggesting the Zakharov equa-
tion as an effective computational tool for prediction. Shemer and
Dorfman [24] reported comparison of experiments of unidirecti-
onal wave groups with both spatial and temporal version of the
MNLS equation. In addition to good agreement between experi-
ments and simulations, they observed a gradual transformation of
an initially symmetric spectrum into a strongly asymmetric one,
this is in agreement with [9].

Until recently, relatively few validation efforts have been made
on nonlinear directional wave fields. Some of these describe direct
large-scale phase-resolved computations of nonlinear ocean wave
fields [42,43]. However, simulation of typical nonlinear ocean wave
fields with this method requires long computation time, limiting its
applicability for short-time wave prediction. Direct comparisons of
numerical simulations based on Higher-Order Spectral method to
wave tank experiments can be found in [7].

In this paper, we shall consider the prediction of both long and
short-crested wave experiments with linear and nonlinear equa-
tions. We  use bichromatic and irregular waves from Marintek to
validate long-crested wave models [37]. We  also use experiments
from MARIN to validate directional seas [21]. Among our selection
of models, and based on an ensemble average of several realiza-
tions, the MNLS equation gives better prediction of the experiments
for long fetch. For the irregular long-crested wave experiments with
steepness � = kcac = 0.1 we achieve reliable prediction over a fetch of
about 40 characteristic wavelengths. For short-crested wave exper-
iments we find less accurate prediction for the same fetch.

2. Prediction theory

In our setting, the physical problem consists of predicting the
surface elevation at one or several points based on the observations
of the surface elevations at several other points. In addition to loca-
tion, the timing will vary. The following sections discuss some of
the methods to be used.

2.1. Linear least squares prediction (LSQ)

We  first consider the well-known calibration/validation setting
where the model is calibrated using data both from the observation
and prediction locations. In a second step another independent data
set may  be used for validating the model. Let X denote the input
observation of dimension O × N, where O is the number of obser-
vation spatial locations and N is the number of discrete times. The
output Y denotes the prediction, in the simplest case, for only one
prediction location, it has the dimension 1 × N. The expression for
the best linear prediction, Yp, takes the form

Yp = qX, (1)

where the weight q is chosen so as to make the prediction error,
e = Y − qX,  as small as possible. Here q is a vector of size 1 × O.

The calibration step consists of determining the weight q, which
may  then be applied to Eq. (1) so as to obtain a reasonable predic-
tion of Y, Yp, for a new sets of observations. The numerical problem
thus consists of solving Eq. (1) for q. However, the resulting sys-
tem of equations may  be overdetermined, and the system may  not
always have a unique solution. The aim is thus to consider the error
expression e = Y − qX and write the least squares problem

‖e‖2 = (Y − qX)(Y − qX)′. (2)

If X has full rank, one may  consider solving the so-called normal
equations that appear from minimizing the linear least squares
problem in Eq. (2)

q = YX′(XX′)−1
. (3)

Even if X has full rank, the normal equations may  be numerically
ill-conditioned when the condition number of X becomes large.
Numerical treatment, such as QR-factorization of X is then neces-
sary to avoid numerical problems (see, e.g. [12,22]).

Consider X(t) and Y(t) are measurements from two locations,
where Y is delayed in time relative to X by t0. In this case, Y should
be compensated for the forward shift in time compared to X, say
Y = �(t + t0), where � is the surface displacement at the selected
location. The optimal time-shift, t0 is determined such that the
prediction error is minimized.

2.2. Predictions based on covariance matrices (COV)

This method is a generalization of the LSQ method allowing
both X and Y to be interdependent stochastic variables. Moreover,
the covariance matrices entering the formula may  be estimated
in several different ways. Assume that X and Y are real or com-
plex multivariate stochastic variables with dimensions O × N and
M × N respectively, where M is the number of prediction locations.
In order to keep things simple, we  shall in the following assume
that all variables have zero mean. For this method, the prediction
Yp also takes the form given in Eq. (1) where in this case Yp is a vec-
tor, and q is an M × O-matrix determined by minimizing the error
covariance matrix with respect to the partial ordering of positive
definite Hermitian matrices (see, [1], for this elegant technique).

Let X and Y have covariance matrices

�XY = E[XYH] = �H
YX, (4)

and similarly for �XX and �YY. Superscript H means the Hermi-
tian transposed. Recalling e = Y − Yp, the unique minimum for �ee
is obtained with

q = �YX�−1
XX = �H

XY�−1
XX, (5)

when �XX is nonsingular ([1], Thm. 8.2.1). The optimal prediction
may  thus be written as

Yp = �YX�−1
XXX, (6)

and the minimal error covariance matrix becomes

�ee = �YY − �H
XY�−1

XX�XY, (7)

where the last term on the RHS is the prediction covariance matrix,
�YpYp = �H

XY�−1
XX�XY. Thus,

�YY = �YpYp + �ee, (8)

[1]. In conclusion, we may  therefore always decompose Y into the
best linear predictor from X, as shown in Eq. (6), and an orthogonal
component, e = Y − Yp, which is completely uncorrelated. It is inter-
esting to observe that e is additive and orthogonal to the prediction
of Y. Obviously, should X be orthogonal to Y, the prediction is simply
YP = 0 and e = Y.
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