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A B S T R A C T

In order to generate very long waves in laboratory, a bottom-tilting wave maker is designed and used at the
University of Dundee. This new type of wave maker can produce waves longer than solitary waves in terms of
the effective wavelength, which provides better long wave model. Nonlinear and dispersive numerical models
are built for modelling the wave tank. A shock-capturing finite volume scheme with high-order reconstruction
method is used to solve the governing equations. By comparing to the experimental measurements, the
numerical models are verified and able to approximate the resulting waves in the wave tank.

1. Introduction

Over the last few decades, there have been great interests in
tsunami behaviour in near shore region and coastal areas. Among
these studies e.g., [10,26,17,15,6], solitary wave has been the most
commonly used tsunami wave model theoretically and experimentally.
Indeed one of the reasons that solitary waves have been so popular for
such a long time was that they are relatively easy to generate in
laboratory [9].

Solitary wave propagates in constant depth with permanent form,
whose surface elevation is described as
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in the horizontal coordinate x and time t, where η, As, c and h0 denote
free surface elevation, wave height, phase velocity and static water
depth, respectively. However, recent studies such as [20] show that
wavelength-to-depth ratios of solitary waves are much smaller than
that of tsunamis in reality in the respect of the effective wave period Ts
and the effective wavelength Ls of solitary waves:
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In other words, the link between its effective wavenumber Ks and wave
height As is not realistic. In particular, when tsunamis are approaching
the beach, nonlinearity increases significantly, leading to skewness of
waves, which is already beyond the KdV scale.

Piston-type wave makers are popular and widely used to generate
long waves in laboratory, but the disadvantage is that the wavelength of

the generated waves is limited by the stroke length Lp as shown in
Fig. 1. Very few studies mention using bottom-wave-generator to
simulate tsunami generation or create long waves. The one designed
by [10] is well known, which was designed for generating solitary waves
excited by positive bed motion under the control of a hydraulic servo-
system. We note here that waves generated by sudden bottom motion
have been studied in the context of impulsive sloshing in a partially-
filled tank e.g., [14,16,28].

In the present study, a bottom-tilting wave maker at the University
of Dundee is investigated. The wave maker is able to generate very long
waves, considerably longer than the effective wavelength of solitary
waves with same amplitude. The bottom-tilting wave maker is designed
based on a simple idea that moving the entire bottom can generate
waves as long as the tank itself, which should be the longest wave in
any given tank. A schematic drawing of concept of the bottom-tilting
wave maker is depicted in Fig. 1. Note that, in comparison with typical
piston-type wave maker, the bottom tilting wave maker has much
longer moving length L, which can produce longer waves. In addition,
the generated waves have very short distance to arrive at the shoreline
by using the adjustable slope, which can be used to model long wave
run-up.

There are a variety of wave theories which have been adopted to
examine long waves. In early stage, people evaluated the wave motion
from the linear wave theory in tsunami studies. For instance,
[12,13,27] and [26] have proposed the linear wave theory to approx-
imate near and far field waves. Although, the linear wave theory is
limited to situations where nonlinear effects are small for both near and
far field waves, it is used as first approximation of long waves in this
work.
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When nonlinearity makes significant influence, the classical non-
linear shallow water (NSW) equations have been usually employed for
simulating waves:
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where η, u, h and g denote the free surface elevation, the depth-
averaged fluid velocity, the static water depth and the gravitational
acceleration, respectively. [5] proposed an analytical solution to NSW
equations for monochromatic waves running up a beach with constant
slope. An analytical solution was obtained by [26] for run-up of non-
breaking solitary waves. Further development of the analytical solution
has been made subsequently, e.g. [1,3,2,21].

On the other hand, frequency dispersion is of great importance
during wave generation and propagation when pressure cannot be
assumed hydrostatic. Many studies have shown that dispersive models
have good performances on long wave simulation e.g., [23,30,8,7].
Hence, Boussinesq equations become a good choice to demonstrate the
evolution of the surface waves, meanwhile both dispersion and non-
linearity are considered on the basis that they are both small and of the
same order of magnitude. [8] introduced a variety of Boussinesq-type
wave systems, among which some are applicable for flat bottom and
some for arbitrary bottom. In this work, time-dependent bathymetry
variations have to be coupled with surface wave. Therefore, the
Boussinesq system derived by [29] for dynamic bathymetry is em-
ployed:
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which is an extension of the classical Boussinesq systems.
A wide range of numerical methods are developed in solving these

hyperbolic equations, such as finite difference methods, finite element
methods, finite volume methods and discontinuous Galerkin methods.
[7] used a finite volume scheme to solve the Boussinesq equations for
modelling surface waves due to underwater landslides. They demon-
strated that finite volume method is good at approximating solutions to
conservative equations with high efficiency, accuracy and robustness
owing to its conservative and shock-capturing properties. Their nu-
merical results have a good agreement with not only solitary wave
propagation and interaction theoretically but also some experimental
measurements. Since how to deal with the discontinuity of discrete
solution at the cell interfaces is of key importance, [8] introduced three
types of numerical fluxes which can take effect along with some
reconstruction techniques such as TVD [25], UNO [11] and WENO
[18] schemes. Among the three types, the central flux, as a Lax-
Friedrichs type flux, is chosen in this work. Characteristic flux function
is the one [7] used, and confirmed by [8] that it works as well as the

central flux. [15] used Lax-Friedrichs flux splitting, which also shows a
good performance. For reconstruction techniques, either UNO2
scheme [11] or WENO scheme uses adaptive stencil to interpolate
the numerical flux and keep the piecewise polynomial representations
always non-oscillatory. Note that, UNO2 scheme is of second order
accuracy while WENO scheme can obtain higher-order accuracy.

The present study introduces the numerical modelling for this new
bottom-tilting wave tank system. The fluid is under the assumptions of
being inviscid, incompressible and irrotational flow. In addition,
bottom dissipation is ignored and full reflection happens at the tank
ends. In Section 2, linear wave theory is used for preliminary
estimation. Then, in Section 3 the numerical models considering
nonlinearity and dispersion for this specific wave tank are described
in detail, including the numerical schemes and methods. By comparing
the theoretical and experimental results, this numerical model is
validated in Section 4. Finally, conclusion remarks are given in
Section 5.

2. Preliminary estimation by linear wave theory

Fig. 2 shows the schematic sketch of the two-dimensional wave tank
with a bottom moving in a combined rotating and lifting manner.
Clearly, the analysis is divided into two parts at the toe of the slope
(hinge). The moving bottom part will generate long waves, and the
other part is for the generated waves propagating in the constant water
depth or running up the slope. In this section, slope is not considered.
The coordinate system origins at the end wall of the generation part,
meanwhile the positive x axis is pointing the other end wall and z axis is
pointing upwards. Thus, the fluid domain is bounded by the two end
walls, the free surface and the bottom solid boundary, while the latter
two are defined as z η x t= ( , ) on the surface and z h x t= − ( , ) at the
bottom. For x L0 < < , water depth is expressed by
h x t h ζ x t( , ) = + ( , )0 , where ζ denotes the bottom motion displacement,
and h0 the initial water depth.

Linear wave theory is useful for quick estimate of the generated
waves, although limited by the conditions that it only applies to non-
breaking waves and where nonlinear effects are small. The fluid motion
in the wave tank can be described by the two-dimensional Laplace
equation along with the simplified boundary conditions by linear wave
theory. With Φ denoting the velocity potential, continuity equation
reads
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with boundary conditions introduced from the linearised kinematic
and dynamic boundary conditions:
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Under the assumption that the moving bed is flat, solid and imperme-

Fig. 1. Comparison between piston-type wave maker and the bottom-tilting wave maker.

Fig. 2. Sketch of the two-dimensional wave maker.
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