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A B S T R A C T

A model is proposed to study transient long waves propagating through coastal vegetation. The coastal forest is
modeled by an array of rigid and vertically surface-piercing cylinders. The homogenization method, i.e. multi-
scale perturbation theory, is applied to separate two contrasting physical length scales: the scale characterizing
transient waves and the scale representing the diameter of and the spacing among cylinders. Fourier transform
is employed so that the free surface elevation and velocity field are solved in the frequency domain. For each
harmonic, the flow motion within a unit cell, consisting of one or more cylinders, is obtained by solving the
micro-scale boundary-value problem, which is driven by the macro-scale (wavelength scale) pressure gradients.
The cell-averaged equations governing the macro-scale wave amplitude spectrum are derived with the
consideration of the effects of the cell problem solution. Similar to [1], the macro-scale wave amplitude
spectrum is solved numerically with the boundary integral equation method, where a vegetated area is
composed of multiple patches of arbitrary shape. Each forest patch can be divided into subzones according to
different properties, such as planting pattern and vegetation size. Each subzone is considered as a homogeneous
forest region with a constant bulk eddy viscosity determined by the empirical formula suggested in [13]. Once
the solutions for wave amplitude spectrum are obtained, the free surface elevation can then be computed from
the inverse Fourier transform. A computing program is developed based on the present numerical model. To
check the present approach, we investigate several different forest configurations. However, we focus on
incident waves with a soliton-like shape. We first re-examine the forest belt case. The numerical model is then
checked by available theoretical results along with experimental measurements for two special forest
configurations. For a single circular forest, the numerical results compare almost perfectly with the analytical
solutions. The comparison with experimental data also shows very good agreements. The effects of different
wave parameters on damping rate are discussed. The numerical model is further compared with the
experiments for a forest region consisting of multiple circular patches. Good agreements are also observed
between the simulated free surface elevations and the experimental measurements. The effectiveness of these
two forest configurations on wave attenuation is discussed.

1. Introduction

Coastal vegetation has been considered as an effective means of
shore protection for both short waves and long waves. To estimate
wave attenuation by vegetation, laboratory observations as well as
mathematical modeling on waves through coastal forests have been
widely studied in recent years. Most of the existing literatures have
been reviewed in [13,14]. However, in the interest of understanding the
capability of coastal vegetation (e.g., mangroves) to dissipate long

waves (e.g., tsunami waves, storm surges), several recent studies are
worthy of mentioning here. For example, [3] conducted laboratory
experiments on solitary waves through an array of emergent rigid
cylinders. Different cylinder arrangements and sizes of array were
tested. By measuring the free surface elevation, the solitary wave
evolution across the target cylinder array was reported and the wave
attenuation was shown. In addition, [5]'s experiments, using both
artificial trees and cylindrical timber sticks, demonstrated the effec-
tiveness of a coastal forest on reducing the maximum run-up of
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tsunami waves. [6] also examined the influences of vegetation density
on wave dissipation and tsunami run-up in their experiments. Different
parameterized models of mangroves were adopted in tsunami damping
tests as well (e.g., [4] and [16]). Numerical approaches on interactions
between solitary waves and vegetation have also been developed. For
example, [10] proposed a three dimensional numerical scheme,
directly simulating the interaction of solitary waves with emergent
rigid cylinders. The flow field around each cylinder was computed from
the direct simulation; however, the required computational efforts were
considerable.

As discussed in [8], applying homogenization (multi-scale pertur-
bation) theory provides higher computational efficiency compared with
direct numerical approach. Separating the wave motion into two
sharply contrasting scales, the macro-scale wave dynamics is solved
based on cell-averaged equations, allowing better understanding of the
physical process. For periodic waves, the semi-analytical model has
been established for predicting the wave attenuation by specific
configurations of cylinder array, e.g. an infinitely long forest belt
([13,14]) and a circular forest ([8]). Furthermore, [1] extended the
model to a forest region of arbitrary shape by employing the boundary
integral equation method. For transient waves, on the other hand, the
model developed in [13] is limited to incident soliton-like waves
propagating through a forest belt.

In this paper, we follow [1] and apply the homogenization theory to
a transient long wave propagating through a forest region, which is
composed of multiple patches of arbitrary shape. Each forest patch has
different numbers of subzones due to different properties (e.g. vegeta-
tion type/size, arrangement and porosity). A subzone can be sur-
rounded by other subzones and/or the open water region, where a
sketch of a general forest region has been given in [1]'s Fig. 1 (it is also
shown as Fig. S1 in the Supplementary materials). With the assump-
tion of homogeneous forest subzones, a dimensional bulk eddy
viscosity is obtained by modifying the empirical formula in [13].
Fourier transform along with the boundary integral equation methods
are applied such that the arbitrary shape of patches/subzones can be
resolved and the macro-scale wave amplitude spectrum is solved
numerically. The free surface elevation is then obtained by inversely
transforming the wave amplitude spectrum solutions back into the
physical domain.

To check the present approach, several forest configurations have
been investigated. For simplicity only the incident waves of soliton-like
shape are considered. The forest belt studied in [13] is first re-
examined with new analytical solutions. A homogeneous circular
forest, used in [8] and [1] for studying periodic waves, is then
employed to check the present approach and numerical model.
Negligible differences are observed between the analytical solutions
and the numerical results for these cases. The comparison between
model results and experimental data is also presented, showing very
good agreement. The relationship between the damping rate and the
nonlinearity of incident wave is discussed. For further investigation of
the skill of the numerical model, the experiments on multiple circular
forest patches in [9] and [11] are simulated and good agreements with
the experimentally-observed free surface elevations are obtained. The
comparison of the effectiveness of a circular forest and multiple smaller
patches on damping the incident wave is presented.

2. Formulation

Defining x x x→ = ( , )1 2 as the horizontal Cartesian coordinates and z
as the vertical coordinate pointing upwards from the mean water level,
the free surface elevation can be expressed as z η x t= (→, ). Focusing on
small-amplitude long waves, propagating in a constant water depth h0,
the leading-order velocities are on the horizontal plane and are
independent of z, i.e. u x t i(→, ), = 1, 2i . Therefore, the linearized equa-
tions ([13]) can be written as

η
t

h u
x

∂
∂

+ ∂
∂

= 0i

i
0

(2.1)

and

u
t

g η
x

ν u
x x

∂
∂

= − ∂
∂

+ ∂
∂ ∂

i

i
e

i

j j

2⎛
⎝⎜

⎞
⎠⎟ (2.2)

in which the bottom friction has been neglected and the eddy viscosity
νe is assumed as a constant.

In this paper we shall use the Fourier transform method to solve the
governing equations and boundary conditions. As an example, the
Fourier transform of the free surface elevation η can be expressed as
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where η x ω( , )i is called wave amplitude spectrum. The inverse Fourier
transform of the wave amplitude spectrum gives back the expression of
the wave surface profile:
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Here we introduce the dimensionless variables as
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where the horizontal coordinates are scaled by the characteristic tree
spacing ℓ (micro-length) and the free surface elevation is scaled by the
incident wave height Hinc. The wave speed of a solitary wave, i.e.

g h H( + )0 inc , is assumed. We first apply Fourier transform to the
linearized Eqs. (2.1) and (2.2), and then normalize the results with the
proper scales as indicated in (2.5) to yield
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where u*i is the dimensionless velocity spectrum and the small
parameter ε is defined as

ε ω
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0 inc (2.8)

We remark here that since the linear long wave theory is used, the
incident wave height must be reasonably small, i.e. H h/ ≪ (1)inc 0 has
been applied. The wave dispersion is also assumed to be negligible.
Therefore, the size of the forest should be in the same order of
magnitude of the characteristic wavelength, which has to be much
greater than the tree spacing.

Following [13], we propose that each forest subzone has a constant
bulk value of dimensional eddy viscosity νe, which can be determined
by the following empirical formula:
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where U0 represents the depth-averaged horizontal water particle velocity.
The corresponding dimensionless eddy viscosity can then be written as

σ ν
ω

n
k

H
h H

k ω
g h H

=
ℓ

= 1.86(1 − ) 1
ℓ +

, =
( + )

.e
2

2.06 inc

0 inc 0 inc

⎛
⎝⎜

⎞
⎠⎟

(2.10)

The dimensionless eddy viscosity σ is a function of ω. It should be noted
that a similar formula was used in [13], where U gh H h= /20 0 inc 0 was
specified.

C.-W. Chang et al. Coastal Engineering 122 (2017) 124–140

125



Download English Version:

https://daneshyari.com/en/article/5473362

Download Persian Version:

https://daneshyari.com/article/5473362

Daneshyari.com

https://daneshyari.com/en/article/5473362
https://daneshyari.com/article/5473362
https://daneshyari.com

