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A B S T R A C T

Advanced numerical models used to predict coastal change at a variety of time and spatial scales often contain
many free parameters that require calibration to the available field data. At present, little guidance (beyond the
adoption of the default values provided) is available in the field of coastal engineering to inform the selection of
best-fit parameter values. Common calibration techniques can often lack a rigorous quantification of model
sensitivity to parameters and parameter-induced model uncertainty. Here we employ the Generalised
Likelihood Uncertainty Estimation (GLUE) method to address these issues. The GLUE method uses Monte
Carlo sampling to assess the skill of many different combinations of model parameters when compared to
observational data. As a rigorous modelling framework, the GLUE method provides a series of standard tools
that assist the modeller to analyse model sensitivity, undertake parameter optimisation and quantify parameter-
induced uncertainty. In addition, new tools are presented here to identify where unique calibrated parameter
sets are required for different observational data (e.g., should the calibrated parameter set differ between
alongshore locations at a site) and investigate the convergence of GLUE estimated optimum parameter values
over increasing numbers of Monte Carlo samples.

As the methodology and philosophy of GLUE is well established in other fields, this paper presents a practical
case study to explore the strengths and weaknesses of the method when applied to a relatively complex coastal
numerical model (XBeach). The results obtained are compared to a previously reported and more ‘standard’
model calibration undertaken within the context of a coastal storm early warning system. While the GLUE
method requires orders of magnitude more computational power, it is shown that its use in place of the more
common one-at-a-time ‘trial-and-error’ approach to model calibration, provides: a significant improvement in
predictive skill; a more rigorous evaluation of the model sensitivity to parameters; the ability to identify distinct
differences in the XBeach model performance dependent on dune impact processes; and additional analysis
including the quantification of parameter-induced uncertainty.

1. Introduction

Numerical models underpin a wide range of coastal engineering
applications and are increasingly being relied upon to provide precise
and detailed predictions as to the timing, location and extent of
morphological change at the coast. For example, numerical models to
predict beach erosion during storms typically require morphology data
consisting of pre-storm elevation data (2D profile or 3D grid) and apply
hydrodynamic forcing (i.e., waves and varying water-levels) to estimate
beach response. In this context, modelling approaches range from
more simple empirical models (e.g., [1–3]), to sophisticated process-
based models that can be used to predict both morphological and
hydrodynamic conditions including shoreline movement, dune erosion,

surfzone circulation and wave run-up (e.g., [4]).
A number of forecasting systems have been developed around the

world which utilise coastal erosion models to quantify coastal storm
hazards and to inform the management of coastal storm risk [5–7]. For
these and other applications, it is imperative that modellers and
decision-makers recognise the uncertainties present in the erosion
models used, especially when utilising models with imperfect formula-
tions and input data [8–10]. Uncertainty in the modelling process can
arise from many sources, including the boundary conditions and input
data (e.g., errors arising from the use of imperfect wave transforma-
tions from deepwater buoy locations to the modelled inshore profile),
model formulation (i.e., if the model equations do not adequately
describe the physics of the system) and through the calibration process
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(e.g., individual modellers may prioritise the calibration of different
parameters or subjectively judge different values to perform better).
Therefore, in order to present accurate representations of uncertainty
bounds, modellers in the field of coastal engineering must have access
to tools with which to robustly assess and quantify each of these
sources of uncertainty, either individually or based on their combined
influence on the final model predictions obtained.

A number of studies have approached the specific challenge of
explicitly quantifying the prediction uncertainty resulting from impre-
cise knowledge of forcing conditions (i.e., storm waves, storm duration,
and surge) by providing probabilistic estimates of storm erosion (e.g.,
[11,12]). Monte Carlo (MC) sampling and the use of bootstrapping
methods to combine the results of many model runs for varying forcing
conditions are used to produce estimates of storm erosion demand and
corresponding uncertainty bounds spanning a range of time scales
[13,14]. While this approach provides considerable insight, this is
effectively limited to one source of prediction uncertainty. Additional
uncertainties stemming from the formulation of the model itself as well
as calibration errors are effectively neglected once the initial calibration
process has been completed [15]. This is a non-trivial assumption that
requires careful investigation, particularly given a recent study by
Splinter et al. [10] which found that the variability of coastal erosion
models can be greater with changes in free parameters than model
inputs such as bathymetry.

Bayesian Networks provide the ability to quantify a number of
different potential sources of prediction uncertainty. These are prob-
abilistic models used to draw statistically significant correlations
between identified variables in the modelled system [16]. This model-
ling approach has been utilised in coastal engineering applications to
estimate storm erosion damage [17], surf zone processes [9,18] and
sediment transport [16,19,20] to yield information on specific errors
and uncertainty in the values for each output variable and model
parameter. Bayesian Networks, however, require large observational
datasets for model training and do not incorporate any of the under-
lying physics that allows model prediction at diverse sites where
different processes may dominate [21]. Ideally, a solution is sought
whereby a similar level of detail about each potential component of
model uncertainty is explicitly identified and quantified; but that the
model remains as closely as possible physics-based, minimising the
need for extensive historical and site-specific training data.

Parameter-induced uncertainty, resulting from the varying of free
parameters during model calibration, is a component of model predic-
tion uncertainty that is rarely quantified [22]. It is common practice to
perform manual ‘trial and error’ selection of parameters to complete
the model calibration process, with relatively few examples in the
coastal engineering literature where more advanced and rigorous
calibration techniques have been applied that guide the choice of free
parameter values and reduce parameter uncertainty (e.g., [23]).
Algorithms have been applied to simpler models with fewer free
parameters, searching through the parameter space to find optimal
parameter values by minimising discrepancies between model predic-
tion and observational data (e.g., [24,25]). However, parameter
response surfaces (i.e., the multidimensional surface that maps the
skill of a model to the value chosen for each free parameter [26]) are
often complex due to the non-linear interaction of parameters inherent
in many coastal numerical models. As a consequence, depending on the
starting parameter values, simple ‘hill-climbing’ algorithms can be
trapped by local optima rather than finding the parameter values that
perform best globally. To deal with these issues, complex methods such
as genetic algorithms [27] and simulated annealing [28] must be
employed which can test random starting points [29].

Advanced process-based models such as XBeach [4], representing
the present state-of the-art in coastal morphodynamic modelling, have
tended to be calibrated less rigorously due to the large number of free
model parameters present and the practical challenge that individual
model runs are time-consuming. XBeach was primarily developed to

predict changes in beach and nearshore morphology that occur during
extreme storms [4], but the abundance of adjustable model parameters
has enabled its adaption to a broad range of applications (e.g.,
[5,12,30–32]). XBeach may be implemented in both one-dimensional
(beach profile) and two-dimensional depth-averaged (coastal area)
modes, solving coupled equations for hydrodynamics, sediment trans-
port and evolving bed morphology.

Documented calibrations of XBeach to-date have typically relied
upon individual modeller experience and manual one-at-a-time para-
meter variation to determine the more sensitive parameters to be
optimised during calibration. Generally only a few values of these
parameters are trialled, and the skill of the model (commonly defined
by a Brier Skill Score) is used to judge performance and determine the
optimal parameter set. Some recent examples from the published
literature of this approach include Harley et al. [33], Splinter and
Palmsten [10], Callaghan et al. [13], Pender and Karunarathna [12]
and Stockdon et al. [34]. Notably, in each of these five example studies,
different subsets of calibration parameters were found to be sensitive.
With the exception of a very limited number of published studies (e.g.,
[35]), there are few examples available that detail the rigorous trial of a
much broader range of XBeach parameter combinations and values.
Crucially, the present authors have been unable to identify any reports
of the use of generalised techniques applied to examine the impact of
XBeach model uncertainty due to parameter selection.

Fortunately, researchers in fields outside of the coastal sphere have
made considerable advances in this area that can be drawn upon. In
this paper we present one such approach, the Generalized Likelihood
Uncertainty Estimation (GLUE) method (see [26]), which has the
potential to address a number of the potential shortcomings identified
above. GLUE is based on MC sampling (i.e., a large number of random
samples) of the potential calibration parameter space, and provides
tools to separately identify and quantify parameter sensitivity, reliable
parameter values and parameter-induced uncertainty.

A fundamental concept underpinning the use of the GLUE method is
‘equifinality’, whereby it is observed that multiple parameter combina-
tions may produce model runs of equal skill (e.g., the same Brier Skill
Score) in estimating observed morphological change in the system
[36,37]. Equifinality can occur due to a range of potential sources,
including: the complex and often non-linear interaction between model
parameters; over-parameterisation without sufficient observational data
to inform parameter selection; uncertainty in the observational data;
and/or model formulation that does not accurately or adequately
encapsulate the full spectrum of processes being numerically simulated.

In this context, the errors in input data and/or model formulation
are termed ‘epistemic’, referring to a lack of knowledge of the system
within the model [38,39]. For instance: the complex three-dimensional
morphology observed at beaches may not be adequately captured in
two-dimensional beach profile surveys; observational data may not
have been obtained immediately before/after the particular storm
event being used for calibration, such that sediment transport is likely
to have occurred outside of the modelled simulation period; and/or the
model may be formulated in such a way that it overly simplifies the
physics of the system [28]. Recognising that these errors cause
equifinality to occur, the modeller's focus is then shifted to finding
the most reliable parameter combination across a range of sites and/or
hydrodynamic boundary conditions, while also assessing the validity of
the model in truly representing the physics responsible for the
observed change [38,40].

The two studies of Ruessink [23] and Ruessink [22], that used the
cross-shore hydrodynamic-morphodynamic model UNIBEST-TC [41]
and a nearshore alongshore current model [42] respectively, together
pioneered the use of GLUE in the field of coastal engineering. These
two applications of GLUE to coastal numerical models focused on
comparing the method to other automated optimisation algorithms,
noting that GLUE was particularly effective where parameter inter-
dependence and complex response surfaces were present ([27] dis-
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