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A B S T R A C T

In recent years significant emphasis has been placed on quantifying coastal flood hazards in the U.S. using high
resolution 2-D hydrodynamic and nearshore wave models. However, these studies are computationally
expensive and often neglect to consider the flooding that arises from the combined hazards of precipitation
and storm surge in coastal watersheds. This paper describes a method to stochastically simulate a large number
of combinations of peak storm surge and cumulative precipitation to determine the hydraulic boundary
conditions for a low-lying coastal watershed draining into a semi-enclosed tidal bay. The method is
computationally efficient and takes into consideration five tropical cyclone characteristics at landfall: wind-
speed, angle of approach, landfall location, radius of maximum winds, and forward speed. A precipitation gage
network and tidal gage data were used, along with observations from over 300 tropical cyclones in the Gulf of
Mexico. A Non-parametric Bayesian Network was built to generate 100,000 synthetic storm events and used as
input to an empirical wind set-up model to simulate storm surge within a tidal bay and at the downstream
boundary of the watershed. Based on the results, probable combinations of cumulative precipitation and peak
storm surge for the watershed during hurricane conditions are determined. These boundary conditions can be
easily incorporated into a coastal riverine model to determine flood risk in the watershed.

1. Introduction

Integrated flood risk assessment is critical for the determination of
appropriate flood mitigation strategies for heavily populated, low-lying
coastal areas. While the number of deaths from tropical cyclones have
decreased with the development of advanced prediction and early
warning systems, economic losses have increased exponentially due to
rapid population growth and urban development near the coast. It is
estimated that today almost half of the global population lives within
150 km of a coastline [1]. These highly urbanized coastal areas are
threatened by the combined impacts of severe storms, especially
hurricane-induced storm surge and heavy precipitation. Communities
along the U.S. Gulf Coast and in delta regions around the world, where
storm surge often coincides with heavy precipitation, are especially
vulnerable.

In the United States, the 100-year Federal Emergency Management
Agency (FEMA) floodplain is used as the primary instrument for
delineating and mitigating flood risk. This boundary, indicating the
1% percent chance of inundation each year from riverine or coastal

flooding, drives federal flood insurance requirements, household
protective actions, and local mitigation policies. It also determines
where future development can take place and what it will look like.
However, increasing evidence suggests that the FEMA 100-year flood-
plain is a poor predictor of actual flood damage and that in some
watersheds, upwards of 50% of insured losses are occurring outside of
the demarcated flood hazard areas [2]. This is especially apparent along
the Gulf Coast where insured assets account for 41% of flood insurance
policies in the United States, but amounted to more than 80% of claim
payouts between 1978 and 2010 [3].

One of the primary contributing factors to floodplain inaccuracy is
the age of existing FEMA floodplain maps; more than 60% of the maps
are at least 10 years old and in some coastal areas, maps date back as
far as the mid-to-late 1970s [4,5]. In addition to their age, riverine
floodplains are derived using deterministic hydrologic and hydraulic
models based on a single design storm. This leads to compounding
uncertainties since the modeled floodplain is only as accurate as the
information used to define them, including the original assumptions
made about the design storm. Other sources of inaccuracy include:
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limited historical hydrometeorological observations [6]; spatio-tem-
poral variations in precipitation [7]; and changes in climate, topogra-
phy, and land use conditions [8].

Similarly, early FEMA coastal floodplains were generated using a
design storm, or Standard Project Hurricane (SPH), which was
intended to represent a probable, yet infrequent hurricane along a
section of the coast [9]. These design storms were often based on a
single storm characteristic: intensity, derived from historical storm
data prior to 1960. The relative calm in the period prior to 1960 and
the oversimplification of hurricane behavior typically led to an under-
estimation of surge heights at a particular coastal location [10]. In
subsequent studies, attempts were made to assess return period surge
using historical water level records; however, the lack of extreme water
level events at a single coastal location coupled with anonymously high
single-storm records made these estimates difficult to resolve [10]. In
response, a move toward generating a probabilistic suite of storms was
made in the 1970s and 1980s and a Joint Probability Method (JPM)
approach based on cluster analysis of hurricane characteristics at
landfall was developed to generate parametric wind fields at landfall
[11]. However, the sources of uncertainty in this approach were quite
high, primarily due to lack of historical data [10].

With the advent of complex computing and high-resolution storm
surge and wave models, renewed interest in improving joint probability
methods (JPM) for coastal modeling has taken place. Recently, JPM-
Optimum Sampling (JPM-OS) was introduced as a method to reduce the
number of representative synthetic storms needed for simulating storm
surge at any particular section of the coast. This method is being applied
in many of the current FEMA Flood Insurance Studies (to be completed in
2020). However, even with the application of the JPM-OS approach,
probabilistic modeling using high-resolution storm surge models is
computationally demanding, requiring large computer clusters to run
[10,12,13]. Furthermore, despite the marked improvement in coastal
modeling and storm surge mapping, the new FEMA floodplain maps still
neglect to consider the flood risk resulting from the interaction between
rainfall-runoff and storm surge at the coast. In small, low-lying coastal
watersheds, where hydrologic response to precipitation is nearly instan-
taneous, determining the joint exceedance of precipitation and storm
surge is critical for assessing flood risk. Here, small variations in down-
stream elevation extend far upstream, impeding the propagation and exit
of the precipitation-induced flood wave from the watershed.

This paper introduces a method for quantifying hurricane boundary
conditions for small, urbanized coastal watersheds draining into a
tidally influenced, semi-enclosed bay systems using a non-parametric
Bayesian network (NPBN) based on Gaussian copulas. The NPBN is
used to generate a suite of synthetic tropical cyclones and the events
are input into an empirical wind setup model to stochastically simulate
a large number of storms in the bay system. The modeled combinations
of storm surge and precipitation provide an initial estimate of joint
exceedance probabilities for a coastal watershed.

As a case study, the method is applied to the Clear Creek Watershed
located 32 km southeast of Houston, Texas on the west side of
Galveston Bay (see Section 3). Galveston Bay creates a complex
environment where surge is often higher on the north and west side
of the bay than on the east due to local wind-setup caused by counter-
clockwise hurricane winds over the Bay [14]. Furthermore, the
combined impacts of little topographic relief, slow or limited infiltra-
tion, rapid urban development, regional subsidence and sea level rise,
and intense storms have led to frequent and severe flooding in the
watershed. In the next section, we provide an overview of non-
parametric Bayesian networks and introduce key terms. This is
followed by a description of the study area and an overview of the
method, model results, discussion and conclusion.

2. Bayesian networks

Bayesian Networks (BN) are probabilistic graphical models that can

be used to represent a large number of interdependent variables [15–
17]. The variables in the network can be either discrete or continuous,
and their dependency on one another is quantified by conditional
probability functions. One of the primary advantages of BNs is that the
probability distribution functions in the graph can be easily updated to
reflect changes in the joint distribution (i.e., inference). Given their
characteristics, BNs can be efficiently sampled to generate large
synthetic data sets [18].

BNs are composed of a number of children (successor) and parent
(predecessor) ”nodes”, which represent a set of random variables
X X X( , ,…, )n1 2 . In this paper, the nodes are labeled on the set of positive
integers. An ordered pair of elements of this set is called an ”arc” which
represents the dependence between each parent-child pair in the
graphical network and has a defined direction such that the graph
remains acyclic. Together, the nodes and arcs represent the depen-
dence structure between the variables in the model, where the joint
distribution of the child nodes can be computed as a product of
conditional probability functions:

∏f x x x f x x( , ,…, ) = ( | )n
i

n

i Pa X1 2
=1

( )i
(1)

where Pa X( )i is the set of parent nodes of xi, with i=1,…,n. For nodes
without parents, Pa X( ) = ∅i and the marginal density is used in Eq. (1).

In this study, a non-parametric continuous Bayesian network
(NPBN) based on copulas is applied as presented in [17,19,18]. In
this model, each continuous random variable is represented by its
empirical distribution (hence the non-parametric part of the name in
this class of BNs) and the dependence structures in the network are
built using bivariate copula of the one-parameter class. Although the
term semi-parametric BNs may be more appropriate to describe this
type of BN (since the procedure relies on one-parameter copulas), to
remain consistent with the previous literature, we use the term NPBN
in this paper. An example NPBN with three nodes is shown in Fig. 1.

NPBNs have several advantages over traditional regression meth-
ods for application to environmental data. For example, environmental
data often exhibits non-linear behavior making it difficult to represent
using traditional regression models. NPBNs can capture and model the
interdependencies between complex environmental variables.
Moreover, the graphical nature of a NPBN makes the dependence
configuration between environmental variables explicit [20].

In an NPBN, the arcs between each parent-child pair (i.e.,
Pa X X( ) →i i) are represented by one-parameter (conditional) copulas.
In its most general form, the bivariate cumulative distribution function
F x x( , )X X i j,i j of the random variables Xi and Xj becomes

F x x C F x F x( , ) = [ ( ), ( )]X X i j X i X j,i j i j (2)

where F x( )X ii and F x( )X jj are the marginal distributions of Xi and Xj and
there exists a copula, C, that describes their dependence structure
[21,46,47]. The advantage of using copulas is that the dependence
structure of F x x( , )X X i j,i j is captured by the copula and the selection of
the copula is independent of the marginal distributions of Xi and Xj

[22–24].

Fig. 1. Example non-parametric Bayesian network (NPBN) with three nodes (X X, …1 3)

connected by three arcs. In this paper, each arc represents a bivariate (conditional)
copula of the one-parameter class.
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