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Abstract: A simple and highly-efficient method for numerically evaluating the waves created by a ship that travels at a constant 
speed in calm water, of large depth or of uniform depth, is given. The method, inspired by Kelvin's classical stationary-phase analysis, 
is suited for evaluating far-field as well as near-field waves. More generally, the method can be applied to a broad class of integrals 
with integrands that contain a rapidly oscillatory trigonometric function with a phase function whose first derivative (and possibly 
also higher derivatives) vanishes at one or several points, commonly called points of stationary phase, with the range of integration. 
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Introduction 

The far-field and near-field waves created by a 
ship, of length L, that travels at a constant speed V 
along a straight path in calm water of uniform finite 
depth D are considered, as is illustrated in Fig.1. 
Far-field ship waves in uniform finite water depth 
have been widely considered in the literature, notably 
in Refs.[1-7], within the classical framework of linear 
potential flow theory, which is the only practical 
option for predicting far-field ship waves. Linear 
potential flow theory also provides a realistic basis to 
determine the near-field flow at a ship hull 
surface[8-12]. 

Within the framework of linear potential flow 
theory considered here, the flow at a ship hull surface 
can be formally decomposed into waves and 
non-oscillatory local flow[8,13]. The local flow 
component in this basic flow decomposition vanishes 
rapidly away from the ship and is negligible in the far 
field, indeed at relatively small distances from the ship. 
The waves in the decomposition into waves and a 
local flow is an essential, in fact dominant, flow 
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component in the near field, and is the only significant 
flow component in the far field. Numerical evaluation 
of the wave component is then a critical element of 
the computation of both far-field ship waves and 
near-field (potential) flow around a ship hull and of 
the related wave drag, sinkage and trim. Indeed, 
numerical evaluation of this major flow component 
has been widely considered[8,9,14-16]. 
    Far-field, as well as near-field, ship waves are 
defined by a Fourier integral associated with a linear 
superposition of elementary waves, explicitly given in 
Refs.[8,9] and in the next section. The integrand of 
this Fourier representation of ship waves oscillates 
very rapidly in the far field, and even in the near field 
for typical relatively small values of Froude number 
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(1) 

 
where V and L denote the speed and the length of the 
ship, as was already noted, and g is the acceleration of 
gravity. A practical numerical methodinspired by the 
method of stationary phasefor evaluating the Fourier 
integral that defines (far-field and near-field) ship 
waves is given in Ref.[15] for deep water. 
    This numerical method is extended here to the 
more general case of shallow water, and moreover is 
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modified. The modification, based on an explicit use 
of the dispersion relation to determine the points of 
stationary phase, yields a method that is simpler, as 
well as more general, than numerical method given in 
Ref.[15]. 
    Although ship waves are considered here, the 
method previously given in Ref.[15] for ship waves in 
deep water, and the related method given here for ship 
waves in uniform finite water depth, can be applied 
more generally to a broad class of integrals of the 
form 
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Here, the amplitude function A(t) is presumed to vary 
slowly with the range of integration a t b  . 
Moreover, the derivative ( )t  of the phase function 

( )t  vanishes (or more generally all the derivatives 
( )m  with 1 m M   vanish) at one or several 

points, called points of stationary phase, within the 
integration range. 
 
 
1. Integral representation of ship waves 
    Ship waves in calm water of uniform depth D  
are now considered. The non-dimensional water depth 
d  is defined as 
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(3) 

 
Finite water depth effects are only significant if 

3d d   as is well known, and the water depth is 

then effectively infinite if d d  . 

    The waves created by the ship are observed from 
an orthogonal frame of reference and related 
coordinates ( , , )X Y Z  attached to the ship. The -Z

axis is vertical and points upward, and the undisturbed 
free surface is taken as the plane = 0Z . The -X
axis is chosen along the path of  the ship and points 
toward the ship bow as is shown in Fig.1. The 
non-dimensional coordinates 
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are used further on. Hereinafter, x  denotes a flow 
field point located within the flow region outside the 
ship hull surface  , and ξ  denotes a point of  , 

as is noted in Fig.1. 
 
 
 

 
 
 
 
 
 

 
 
 

Fig.1 Ship waves created by a ship that travels at a constant  
     speed V  along a straight path in calm water of uniform  
     finite water depth D  
 
    The Cartesian coordinates x  and y  in Eq.(4) 

can be expressed in the polar form 
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where the horizontal distance 2/h Hg V  and the 

ray angle   are defined as 
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The ray = 0  corresponds to the track 0x  , 

= 0y , = 0z   of the ship. 

    Within the framework of linear potential flow 
theory considered here, ship waves can be represented 
in terms of linear superpositions of elementary wave 
functions. 
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and 2( , , ) ( , , ) /k A B K V g   . Moreover, the Fourier 

variables   and   and the wave number 

2 2+k    satisfy the dispersion relation. 
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One has 1t   in deep water d d  . The dispersion 

relation Eq.(8) and the identity 2 2+k    show 

that the Fourier variables   and   in Eq.(10) are 

defined in terms of the wave number k  via relations 
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