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Abstract: Owing to its ability of modelling large deformations and the ease of dealing with moving boundary conditions, the 
material point method is gaining popularity in geotechnical engineering applications. In this paper, this promising Lagrangian method 
is applied to hydrodynamic problems to further explore its potential. The collapse of water columns with different initial aspect ratios 
is simulated by the material point method. In order to test the accuracy and stability of the material point method, simulations are first 
validated using experimental data and results of mature numerical models. Then, the model is used to ascertain the critical aspect 
ratio for the widely-used shallow water equations to give satisfactory approximation. From the comparisons between the simulations 
based on the material point method and the shallow water equations, the critical aspect ratio for the suitable use of the shallow water 
equations is found to be 1. 
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Introduction 
The material point method (MPM) is an exten- 

sion of the fluid implicit particle (FLIP) method which 
was developed from the particle-in-cell (PIC) method 
to overcome many of its inherent numerical problems 
in the early implementations. By introducing the 
Lagrangian particles, the FLIP method eliminates the 
need to discretise the convective term which is a major 
source of numerical error in the PIC method[1]. Becau- 
se of the Lagrangian material description, the FLIP 
can successfully track material discontinuities and 
model highly distorted flows[2-4]. The extension of the 
FLIP method to MPM was originally motivated by the 
problems of solid mechanics involving history-depen- 
dent materials. A distinct feature of the MPM method 
is that the governing equations are presented in the 
weak formulation, contrary to the FLIP method. This 
feature enables the MPM to be consistent with the 
finite element method (FEM) which has been the do- 
minating computational method in geotechnical engi- 
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neering. Another difference is that the constitutive 
equations are invoked at the material points in MPM, 
whereas in FLIP method, they are solved at the fixed 
grid nodes[3]. Recently, the MPM has been further ex- 
tended to handle multi-phase problems with a single 
layer of material points[5-7] or two layers of material 
points[8-10], and they have been extensively applied to 
solve engineering problems such as progressive levee 
failure, pore water pressure development under wave 
attack on sea dike, seepage flow through embankment, 
underwater pipeline erosion, etc.. 

The MPM has many attractive advantages over 
traditional numerical methods. First, it is convenient 
to incorporate time-dependent constitutive models be- 
cause information such as strain, stress, and other time- 
dependent variables can be carried by the moving 
material points, which enables the spatial and tem- 
poral tracking of the history of the material motion. 
Second, the use of a background mesh allows for the 
implementation of boundary conditions in a manner 
similar to the FEM, which is a big advantage com- 
pared with other mesh-free methods. In addition, the 
MPM is free of tensile instability that is evident in 
smoothed particle hydrodynamics (SPH)[11,12]. 

In hydrodynamics, free surface hydrodynamics is 
of significant industrial and environmental importance, 
but challenges arise in the implementation of surface 
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boundary conditions on an arbitrarily moving water 
surface[13]. Due to the fact that the MPM combines the 
advantages of the mesh-based method and mesh-free 
method, it is an attractive method for computing free 
surface flows. However, despite the above mentioned 
advantages, there has been little application of the 
MPM in the field of hydraulic engineering. 

Hence, the purpose of this study is to extend the 
MPM application to free water flow problems and ex- 
plore the hydrodynamics of the dam-break flows. For 
the purpose of model validation, the MPM simulations 
are compared with experimental data and other com- 
putational results. Then, a parametric study of the 
idealised dam-break flow is conducted using the MPM. 
By comparing its predictions with those based on 
Shallow Water Equations (SWEs), it is found that the 
SWEs tend to overestimate the propagation speed of 
the dam-break flow for initial water columns of large 
aspect ratios. When aspect ratio of the initial water 
column is less than 1, then the SWEs give satisfactory 
predictions. Through these studies, the MPM proves 
to be a useful tool for investigating hydrodynamic pro- 
blems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Sketch of background computational grid and the move- 

ment of material points 
 
 
1. MPM model 
 
1.1 Governing equations 

Let the material domain   be represented by pN  

number of material points (Fig.1) and let px  denote 

the position of a material point in the current instant 

(i.e., time t ). The same material point in the initial 

time ( = 0)t  is denoted as 0
px . 

The governing equations which describe the mo- 
tion of the continuum body   are the standard con- 
servation equations: mass (Eq.(1)), and momentum 
(Eq.(2)) 
 
d

+ = 0
dt

   v                             (1) 

 
= +  a b                             (2) 

 
where ( , )t x  is the density of the continuum body, 

acceleration ( , )ta x  is the material derivative of the 

velocity, ( , )tv x  and   is the Cauchy stress tensor 

that can be decomposed into pressure and deviatoric 
components. Water pressure is linked to its density 
change 
 

0
0

= +p p K



                             (3) 

 
where K  is the bulk modulus of water, p  is pre- 

ssure, and the symbols with a subscript indicate the 
initial reference values. 

In the MPM, the non-linear convective term is 
not present in the formulation as a result of the overall 
Lagrangian framework[3]. On the contrary, the posi- 
tions of the material points are updated each time step. 
 
1.2 Weak form of the governing equations 

Each material point carries the field variables, 
mass pM , density ( , )p t x , velocity ( , )p tv x  and the 

Cauchy stress ( , )p tx  ( = 1,2,3 )pp N . It is worth 

noting that the mass pM  is constant throughout the 

computation and therefore mass is conserved auto- 
matically in MPM. Density of the continuum body at 
the current instant can be expressed as 
 

=1

( , ) = ( )
pN

p p
p

t M   x xx                     (4) 

 
where ()  is the Dirac delta function. Then, we have 

the following relationship 
 

d = ( )dP PV M V   x x                  (5) 

 

The weak form of the momentum equation can 
be obtained by multiplying the equation of conserva- 
tion of momentum by a test function w  as 
 

( )d = 0V

      w wa w b             (6) 
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