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Abstract: The quasi-2D model, taking into account the axial velocity profile in the cross section and neglecting the convective term 
in the 2-D equation, can more accurately simulate the water hammer than the 1-D model using the cross-sectional mean velocity. 
However, as compared with the 1-D model, the quasi-2D model bears a higher computational burden. In order to improve the 
computational efficiency, the 1-D method is proposed to be used to solve directly the pressure head and the discharge in the quasi-2D 
model in this paper, based on the fact that the pressure head obtained as the solution of the two-dimensional characteristic equation is 
identical to that solved by the 1-D characteristic equations. The proposed scheme solves directly the 1-D characteristic equations for 
the pressure head and the discharge using the MOC and solves the 2-D characteristic equation for the axial velocities in order to 
calculate the wall shear stress. If the radial velocity is needed, it can be evaluated easily by an explicit equation derived from the 
explicit 2-D characteristic equation. In the numerical test, the accuracy and the efficiency of the proposed scheme are compared with 
two existing quasi-two-dimensional models using the MOC. It is shown that the proposed scheme has the same accuracy as the two 
quasi-2D models, but requires less computational time. Therefore, it is efficient to use the proposed scheme to simulate the 2-D water 
hammer flows. 
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Introduction  

The water hammer is a widespread phenomenon 
in water supply pipeline systems, which often poses a 
threat to the safety of the pipeline systems, so it is im- 
portant to simulate the water hammer at the design 
stage as well as during the operation of the water su- 
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pply networks[1-3]. Due to easy programming and high 
computational efficiency, the 1-D model is widely 
used for the analysis of water hammer problems[4]. 
However, the 1-D model underestimates the frictional 
resistances by using a steady or quasi-steady friction 
term[5-7]. In fact, the velocity gradients at the wall of 
the pipe are greater in the unsteady flows and thus, the 
wall shear stresses are larger than the corresponding 
values in the steady flows[8]. In order to simulate the 
water hammer flows accurately, a 2-D model or a 
quasi-2D model should be used. The quasi-2D 
model[9,10], based on the assumption that the flow is 
axially symmetric and the convective terms are negli- 
gible, associates the 1-D pressure distribution with the 
2-D velocity distribution. Because the velocity profiles 
are taken account of in the cross section, the quasi-2D 
model simulates the water hammer more accurately 
than the 1-D model. However, it bears a higher com- 
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putational burden. Therefore, it is necessary to im- 
prove the computational efficiency of the quasi-2D 
model. 

Several numerical schemes were applied to 
quasi-2D models for analysis of water hammer pro- 
blems. Vardy and Hwang[11] solved the hyperbolic part 
of 2-D governing equations by the method of chara- 
cteristics (MOC) and the parabolic part by finite diffe- 
rence (FD). The model of Vardy and Hwang is known 
to be accurate and stable[12,13], however, it involves the 
inversion of a large matrix. Silva-Araya and Chaud- 
hry[14] proposed a scheme to solve the governing equa- 
tions in the 1-D framework by MOC and the 2-D mo- 
mentum equation by FD. Pezzinga[5,15] used the ex- 
plicit FD scheme to solve the 1-D continuity equation 
and the implicit FD scheme to solve the 2-D momen- 
tum equation. The model is efficient due to the decou- 
pling between the 1-D continuity and 2-D momentum 
equations, through ignoring the radial velocity in the 
calculation process and evaluating the discharge by 
numerical integration. Zhao and Ghidaoui[16] proposed 
an efficient quasi-2D model to improve the numerical 
efficiency in the model of Vardy and Hwang, which 
requires the calculation of two smaller tri-diagonal 
matrices. The model of Zhao and Ghidaoui, with the 
consideration of the effect of the radial velocity com- 
ponent, is a stable implicit scheme. Wahba[17] proposed 
a scheme to solve the 1-D continuity equation and the 
2-D momentum equation by FD for analysis of water 
hammer flows in the low Reynolds number range. 
Korbar et al.[18,19] proposed an efficient scheme to im- 
prove the numerical efficiency of the Zhao and 
Ghidaoui model. In this model, the axial velocity was 
evaluated using the 2-D characteristic equation and 
the pressure head was calculated using the 1-D chara- 
cteristic equation. 

This paper proposes to solve directly the pressure 
head and the discharge in the 1-D form and the wall 
shear stress in the 2-D form by MOC, based on the 
fact that the pressure head obtained by the 2-D chara- 
cteristic equation is identical to that by the 1-D chara- 
cteristic equations. The accuracy and the efficiency of 
the proposed scheme are shown by comparing with the 
two quasi-2D models (i.e., the model of Zhao and 
Ghidaoui and the model of Korbar et al.) in a numeri- 
cal test. 
 
 

1. Governing equations and numerical scheme 
 

1.1 Governing equations of quasi-2D model 
Assuming that the flow is axially symmetric and 

the convective terms are negligible, the 2-D governing 
equations for water hammer flows in a pipe are expre- 
ssed as follows[16]: 
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where x  is the axial distance along the pipe, r  is 
the radial distance from the pipe axis, t  is the time, 
r  is the fluid density, H  is the pressure head, u  
and v  are the axial and radial velocities, respectively, 
a  is the wave speed, g  is the gravitational accelera- 
tion, and t  is the total shear stress. The 1-D governing 
equations are derived by integrating Eq.(1) and Eq.(2) 
over the pipe section, yielding 
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where Q  is the discharge, A  is the sectional area of 
the pipe, R  and D  are the radius and the diameter 
of the pipe, respectively, Tν  is the total viscosity, wt  
is the wall shear stress. The governing equations are 
numerically solved by the MOC and hence, the chara- 
cteristic forms of the 2-D and 1-D governing equations 
are given as follows: 
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where = /aC gA a . 
 
1.2 Quasi-2D models 

The computational domain for the discretization 
of Eq.(5) is shown in Fig.1. The pipe length, L , is 
divided into xN  reaches with a constant length =x∆  

/ xL N  in the axial direction. Each computational point 
in the axial direction of the pipe is discretized into rN  
cylinders with varying thickness in the radial direction. 
In Fig.1(a), jr  and cjr  are the coordinates of the 
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