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A B S T R A C T

An analytical study on linear wave propagation over a submerged circular shoal is conducted, where the water
depth is quasi-idealized with the water depth within the shoal region being a positive constant plus a power
function of the radial distance. By using two variable transforms, a new analytical solution in the form of Fro-
benius series to the modified mild-slope equation (MMSE) is constructed and the convergence condition of the
series is analyzed and clarified. The present solution extends the validity scope of the existing analytical solutions
for wave propagation over a circular shoal from the long-wave range to the whole wave range. Comparison among
the present solution, two sets of experimental solutions and MMSE based numerical solutions is conducted and
nice agreements is obtained. Based on the present model, the influence of shoal size such as the radius, height and
concavity on wave amplification is investigated. It is shown that the maximal wave amplification increases with
the increase of the shoal size. The study of the influence of the incident wavelength on wave amplification shows
that the maximal wave amplification often occurs when the wavelength is about five times of the global water
depth.

1. Introduction

When propagating over a submerged shoal such as a coral reef or
artificial fish reef in coastal region, water waves may be transformed and
amplified because of the scattering effect including reflection, refraction
and diffraction caused by the variation of water depth. Due to the
physical and practical significance, the related problem has been inten-
sively studied for many decades by using numerical models (Berkhoff,
1972; Flokstra and Berkhoff, 1977; Radder, 1979; Panchang et al., 1988,
1990; Zhu, 1993; Chandrasekera and Cheung, 1997; Choi et al., 2009;
Choi and Yoon, 2011; Griffiths and Porter, 2012) or by experimental
models (Sharp, 1968; Vincent and Briggs, 1989; Lie and Tϕrum, 1991;
Suh et al., 2001; Lee et al., 2013). Analytical models are very welcome
due to their high accuracy, low cost in labor, time saving and important
role in theoretical analysis and benchmark test to numerical models.
However, due to the difficulty in solving differential equations, analytical
solutions are generally hard to obtain.

The first analytical solution for wave propagation over a shoal was
given by Zhang and Zhu (1994), who considered a circular paraboloidal
shoal where the water depth within the shoal region is assumed to be
hðrÞ ¼ h1 þ ðh0 � h1Þðr=r0Þ2, with r being the radial distance from the

center of the shoal, h0 the global water depth over the flat bottom outside
the shoal, and r0 and h1, respectively, the radius and submergence of the
shoal. They solved the linear long-wave equation (LWE) and constructed
an analytical solution in terms of Frobenius series which unconditionally
converges in the whole shoal region.

Liu and Li (2007) considered wave propagation over a circular
truncated shoal with the variable water depth over the shoal being
assumed to be hðrÞ ¼ h0ðr=r0Þs, which is a power function of the radial
distance. Bottom topographies with such kind of depth profile were
classified as idealized seabeds by Liu et al. (2013). Due to this idealized
assumption, the truncated shoal crest is exactly located on the still water
level and an analytical solution to the LWE in a closed-form in terms of
Bessel functions can be obtained. For the same reason, most of the var-
iable seabed topographies considered in previous analytical studies to the
LWE for linear wave propagation were also assumed to be idealized, see
Kajiura (1961), Dean (1964) and Liu et al. (2013) in two dimensional
case and Homma (1950), Yu and Zhang (2003) and Niu and Yu (2011a,
2011b) in three dimensional case.

Zhu and Harun (2009) solved the LWE again for wave propagation
over the same paraboloidal shoal studied by Zhang and Zhu (1994), in
which Suh et al.’s (2005) analytical technique in solving long wave
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scattering by a circular bowl pit was employed. However, due to the
difference between the bowl pit and the paraboloidal shoal, the Frobe-
nius series constructed by Suh et al. (2005) unconditionally converges in
the whole pit region, while the one constructed by Zhu and Harun (2009)
converges only when the shoal is sufficiently submerged with
h1=h0 >0:5, in fact, in Zhu and Harun (2009, lines 4–5 on p. 318), the
condition a> b is equivalent to h1=h0 >0:5.

Niu and Yu (2011c) further extended Zhu and Harun's (2009) solution
for a paraboloidal shoal to a much more general shoal with the water
depth over the shoal being modified to hðrÞ ¼ h1 þ βrs, where β ¼
ðh0 � h1Þ=rs0 and s is an arbitrary positive real number. They constructed
an analytical solution in the form of Frobenius series to the LWE. How-
ever, their solution is also convergent only if the condition h1=h0 >0:5 is
satisfied, see Eq. (27) in Niu and Yu (2011c).

To remove the restriction on the shoal submergence in both Zhu and
Harun (2009) and Niu and Yu's (2011c) series solutions, Liu and Xie
(2011) introduced a new variable transform t ¼ βrs=ðβrs þ h1Þ, see their
Eq. (6). Based on the key transform, a Frobenius series with uncondi-
tional convergence in the entire shoal region with any submergence was
constructed. Liu and Xie (2011) further showed that, their new solution
in the limiting case with the power exponent s approaching the infinity
degenerates into the classical analytical solution for wave propagation
over a submerged circular cylinder given by Longuet-Higgins (1967).

However, as the names “long-wave equation” and “shallow-water
equation” indicate, the validity scope of all the aforementioned analytical
solutions is restricted to the long waves or the shallow-water waves. The
first analytical solution for wave scattering by a submerged truncated
paraboloidal shoal with the validity scope being the whole wave spec-
trum from shallow water to deep water was constructed by Lin and Liu
(2007), where the traditional mild-slope equation (MSE, Berkhoff, 1972)
was solved by employing an approximate analytical technique proposed
by Liu et al. (2004). To the authors' knowledge, exact or approximate
analytical solution for a un-truncated shoal with the validity scope being
the whole wave spectrum has never been constructed though several
experiments for wave scattering by circular paraboloidal shoals were
conducted by Sharp (1968) (also see Williams et al., 1980) and Suh
et al. (2001).

In this paper, we are going to construct an exact analytical solution to
the modified mild-slope equation (MMSE, Chamberlain and Porter,
1995) for linear wave scattering by a general un-truncated shoal where
hðrÞ ¼ h1 þ βrs with 2=s being a positive integer S, i.e., s ¼ 2=S, S ¼
1; 2;3;… Hence those paraboloidal shoals (i.e., s ¼ 2) experimentally
studied by Sharp (1968) and by Suh et al. (2001) are included in the
present study. Because the present solution is based on the MMSE, it is
not only valid in the whole spectrum from shallow water to deep water,
but can also deal with those shoals with relatively steep surfaces.

2. Series solution and convergence analysis

As shown in Fig. 1, we consider the scattering of simple harmonic
waves over a submerged circular shoal, where r0, h0 and h1 are the radius
of the shoal, the constant water depth over the flat bottom, and the
submergence of the shoal, respectively. Let x, y and z be Cartesian co-
ordinates with its origin being located above the shoal center on the still
water level, then the water depth in the whole region is given by

hðrÞ ¼
�

h0; r 2 ðr0;þ∞Þ;
h1 þ βrs; r 2 ½0; r0�; (1)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, β ¼ ðh0 � h1Þ=rs0, and 2=s being a positive integer S,

i.e., s ¼ 2=S, S ¼ 1;2;3;…
According to Chamberlain and Porter (1995), the water surface

elevation η ¼ ηðx; yÞ may satisfy the following MMSE (a later version of
the MMSE see Porter, 2003)

∇⋅ðu0∇ηÞ þ
�
k2u0 þ u1∇2hþ u2ð∇hÞ2

�
η ¼ 0; (2)

where

u0ðrÞ ¼ 1
2k

tanh kh
�
1þ 2kh

sinh 2 kh

�
; (3)

u1ðrÞ ¼ sech2kh
4ð2khþ sinh 2 khÞ ðsinh 2 kh� 2kh cosh 2 khÞ; (4)

u2ðrÞ ¼ ksech2kh

12ð2khþ sinh 2 khÞ3
�
16ðkhÞ4 þ 32ðkhÞ3 sinh 2 kh

� 9 sinh 2 kh sinh 4 kh

þ6khð2khþ 2 sinh 2 khÞ�cosh22kh� 2 cosh 2 khþ 3
	�
; (5)

∇ is the horizontal gradient operator, and k is the wave number deter-
mined by the following implicit dispersion relation

ω2 ¼ gk tanh kh; (6)

in which ω is the angular frequency and g is the gravitational accelera-
tion. The dispersion relationship was first derived by Airy in 1841, see
Craik (2004), and is valid for any water depth from shallowwater to deep
water, laying a solid foundation for modern hydrodynamics and ocean
engineering (Lamb, 1932; Dean and Dalrymple, 1984; Mei, 1989).

Since the seabed is axisymmetrical, we better introduce the cylin-
drical coordinates ðr; θÞwith x ¼ r cos θ and y ¼ r sin θ. It is noted that u0
is independent of θ, then Eq. (2) can be rewritten as

∂2η
∂r2

þ 1
r2

∂2η
∂2θ

þ
�
dln u0
dr

þ 1
r

�
∂η
∂r

þ
"
k2 þ u1

u0

�
d2h
dr2

þ 1
r
dh
dr

�
þ u2
u0

�
dh
dr

�2
#
η

¼ 0:

(7)

Further, using the variable separation technique, we may expand a
solution to Eq. (7) into a Fourier-cosine series as

ηðr; θÞ ¼
X∞
n¼0

RnðrÞcos nθ: (8)

By substituting Eq. (8) into Eq. (7) and using the orthogonal property
of function series fcos nθg, Eq. (7) is reduced into the following ordinary
differential equation

R00
nðrÞ þ AðrÞR0

nðrÞ þ BðrÞRnðrÞ ¼ 0; (9)

Fig. 1. A definition sketch of a submerged circular shoal.
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