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A B S T R A C T

A laboratory experiment is performed to investigate the generation of periodic waves with small amplitudes in a
system of two fluid layers in the presence of the top free surface. A horizontal cylindrical wavemaker with a
circular cross section is oscillated in two immiscible fluids, silicon oil and water, and the motions of the free
surface and the interface between the two fluids are monitored using laser images, and these results are further
confirmed with wave probe measurements. There are two different wave modes depending on the relative phase
between the motions of the free surface and the interface; barotropic if they are in phase and baroclinic if they are
180� out of phase. To determine the mode of dominance, the position of the wavemaker (at the free surface, at the
interface, and below the interface) and the oscillation frequency are varied and the observed wave profiles are
decomposed into barotropic and baroclinic waves. In the high frequency range, irrespective of the wavemaker
position, it is observed that barotropic waves are dominant, whereas in the low frequency range, baroclinic waves
become more important as the submergence depth of the wavemaker increases.

1. Introduction

A steep density gradient is often generated in the oceans due to the
abrupt variations of temperature and/or salinity and, then, the density-
stratified sea water is often modeled as a system of two layers with
different densities. Theoretically, this simplified two-layered system ad-
mits two-dimensional plane waves both on the top free surface and the
interface between the two fluids, and these waves are referred to as
surface and internal waves, respectively. Furthermore, the waves are
called barotropic or baroclinic if they are in phase or 180� out of phase
with each other, respectively. Recently, due to their highly nonlinear
nature, particular attention has been paid to the propagation of baro-
clinic solitary waves, which have been observed frequently in many field
observations (Sandstrom and Elliott, 1984; Apel et al., 1985; Liu et al.,
1998). Their generation processes have been also studied extensively for
different generation mechanisms such as the interaction of tidal currents
and bottom topography (or, equivalently, translating bottom topographic
forcing) and surface wind forcing (Goryachkin et al., 1992; Holloway
et al., 1997; Simmons et al., 2004; Garrett and Kunze, 2007; Farmer,
1978; Rubenstein, 1994; Stevens et al., 1996). Previous studies have

focused on baroclinic waves at the interface, and it is quite common to
assume that the top surface is rigid, instead of free. This is valid only
when the density variations are small, where the Boussinesq approxi-
mation is applicable. In laboratory experiments, the assumption of small
density variations is often violated (Koop and Butler, 1981; Michallet and
Barthelemy, 1998) and the presence of the top free surface is no longer
negligible even for baroclinic waves and the motion of the top free sur-
face has to be included for the complete description of excited waves.
Nevertheless, only a limited number of studies that describe waves in a
two-layer system with a free surface, in particular, under the action of
external forcing, have been reported. Yeung and Nguyen studied steady
three-dimensional waves in a two-layer system for a steadily translating
source, and they described wave patterns depending on the Froude
number and the density difference (Yeung and Nguyen, 1999). The
diffraction problem of incident waves scattered by a fixed horizontal
cylinder was studied by Linton and Mclver (1995) and Cadby and Linton
(2000) for two and three-dimensional waves, respectively. On the other
hand, for the radiation problem of forced waves by an oscillating object,
Ten & Kashiwagi performed a boundary element method based numer-
ical study of a floating box-shaped body oscillating in two-layer fluids
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and validated their numerical results for hydrodynamic coefficients with
experimental measurements (Ten and Kashiwagi, 2004). In more detail,
they studied on the generation and propagation of linear surface- and
internal gravity waves for two different configurations of a vertically
oscillating box-shaped wavemaker; in one case, the wavemaker is posi-
tioned on the surface of the upper fluid and, in the other case, the
wavemkaer is immersed both in the upper and lower fluids. Their
experimental settings (upper to lower fluid height ratio, density ratio,
and viscosity ratio) are different from ours. Most of other existing
experimental works are on the generation and propagation of nonlinear
surface- and internal gravity solitary waves by some wave-making
mechanisms; vertically oscillating box-shaped wavemaker at the inter-
face between two fluids (Walker, 1973), dam-breaking type wavemaking
(Michallet and Barthelemy, 1998; Kodaira et al., 2016), horizontally
translating ship-shaped model moving on the surface of the upper fluid
(Mercier et al., 2011). Also, there exist a few experimental works on the
generation and propagation of linear surface- and internal grav-
ity–capillary waves in two-layered fluids (Issenmann et al., 2016; Falcon,
2010). In these works, a horizontally oscillating blade-type wavemaker is
used, which is immersed both in the upper and lower fluids. In summary,
among the aforementioned previous studies, except the work of Ten and
Kashiwagi (2004), few experimental studies have been carried out on the
generation and subsequent propagation of periodic waves in two-layered
fluids. This is the subject of the present paper. In particular, we monitor
the amplitude variations of barotropic and baroclinic waves depending
on the frequency and the position of a vertically oscillating horizontal
cylindrical wavemaker. After introducing linear water wave theory in
two-layer fluids, the experimental set-up and the measurement technique
are described. Together with an analysis of the decomposition of
observed wave profiles into barotropic and baroclinic modes, experi-
mental results are discussed and future work is also suggested.

2. Linear theory

Fig. 1 shows the schematic illustration of surface and internal waves
in two-layer fluids with present experimental setting. Here, we consider
only gravity waves and neglect the effect of surface tension. The refer-
ence coordinate is located at the interface between two still fluids, and
the x-axis is the direction of the wave propagation and the z-axis is the
vertical direction in which the gravitational force acts in the negative z
direction. The densities of the upper and lower fluids are ρ1 and ρ2,
respectively, and the depths of the upper and lower fluids are h1 and h2,

respectively. Assuming the two fluids are inviscid and incompressible
and the flow is irrotational, the upper-layer velocity potential ϕ1 and the
lower-layer velocity potential ϕ2 satisfying the Laplace equations can be
written in complex forms, with the implication of taking the real part, as

ϕ1 ¼ fA cosh kðz� h1Þ þ B sinh kðz� h1Þ geiðkx�ωtÞ (1)

ϕ2 ¼ fC cosh kðzþ h2Þ þ D sinh kðzþ h2Þ geiðkx�ωtÞ (2)

Here, k is the wavenumber, ω is the angular frequency, t is time, and
A;B;C;D are unknown coefficients. The displacements of the free surface
and the interface are given, respectively, by

ζ ¼ ζ0e
iðkx�ωtÞ (3)

η ¼ η0e
iðkx�ωtÞ (4)

where ζ0 and η0 are the amplitudes of surface and internal waves,
respectively. These velocity potentials and displacements satisfy the
following six linearized boundary conditions. At the top free surface, the
kinematic and dynamic boundary conditions are given by

∂ζ
∂t

¼ ∂ϕ1

∂z
;

ζ ¼ �1
g
∂ϕ1

∂t
at z ¼ h1

(5)

At the interface, the two kinematic and one dynamic boundary con-
ditions are given by

∂η
∂t

¼ ∂ϕ1

∂z
;

∂η
∂t

¼ ∂ϕ2

∂z
;

ρ1

�
gηþ ∂ϕ1

∂t

�
¼ ρ2

�
gηþ ∂ϕ2

∂t

�
at z ¼ 0

(6)

At the bottom, the boundary condition is given by

∂ϕ2

∂z
¼ 0 at z ¼ �h2 (7)

By substituting Eqs. (1)–(4) into Eqs. (5)–(7), one can find that

Fig. 1. A schematic of the problem: The surface and internal waves are denoted by ζ and η, respectively, and both consist of barotropic and baroclinic wave components.
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