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A B S T R A C T

Numerical simulations of unsteady two-dimensional flow around a rotationally oscillating circular cylinder,
placed in a uniform cross flow of a constant property Newtonian fluid, are performed at a fixed Reynolds number
of 200. The investigation is based on the solutions of stream function-vorticity formulation of Navier-Stokes
equations on non-uniform polar grids using a higher order compact (HOC) formulation. The flow field is
mainly influenced by Reynolds number, Re, maximum angular velocity of the cylinder, αm, and the frequency
ratio, f=f0, which represents the ratio between the frequency of oscillation, f, and the natural vortex shedding
frequency, f0. The ranges considered for these parameters are 0:5⩽αm⩽6:0 and 0:5⩽f=f0⩽3:0. The resulting vortex
formation modes and lock-on phenomena behind the cylinder as well as the fluid forces acting on the cylinder are
analyzed. Occurrence of new multiple lock-on regions is demonstrated in detail by the variation of f and αm. The
instances of high drag reduction at high values of αm are confirmed. Comparisons with previous numerical and
experimental results verify the accuracy and validity of the present study.

1. Introduction

The investigation of flow around oscillating bluff bodies has been a
primary task in the design of numerous cylindrical structures. The key
feature of interest for flow around oscillating bodies is the periodic vortex
shedding phenomenon and how it can lead to better understanding of
structure failures. Hence, due to practical significance of this type of flow,
numerous fundamental, experimental, analytical and numerical studies
have been performed over the years; see, for example, the recent works of
Sarpkaya (2004), Bearman and Obasaju (1982), Bearman (2011), Ray
(2011), Williamson and Govardhan (2004), Sumer and Fredsøe (1997),
Baranyi (2008), Poncet (2002), Koide et al. (2002), Mittal and Ray
(2013, 2015), Mittal et al. (2016), Mittal (2016) and Al-Mdallal (Al-
Mdallal, 2015; Al-Mdallal and Mahfouz, 2017).

Rotational oscillation of the cylinder in the presence of uniform
stream has been found to provide an important means of flow control.
Such studies throw light on mechanisms that reduce forces or suppress
vortex shedding. In an early numerical simulation by Okajima et al.
(1975), it was reported that no periodic wake is found behind a sta-
tionary cylinder for Re ¼ 40, but for the same Re and f ¼ 0.11, forced
periodic oscillation triggers a periodic wake in the near flow. Experi-
ments performed by Taneda (1978) exhibit that vortex shedding could be

nearly eliminated at very high oscillation frequencies. In their experi-
mental study, Tokumaru and Dimotakis (1991) achieved a significant
reduction in the drag (80%) for high Reynolds number Re ¼ 15000. Lu
and Sato (1996) numerically investigated the vortex shedding behavior
at Re ¼ 200; 1000 and 3000 and reported that the large-scale vortex
structures in the near wake are nearly the same at these Reynolds
numbers. Shiels and Leonard (2001) numerically studied the influence of
rotational control on drag reduction for a range of Reynolds number from
150 to 15,000 and confirmed the findings of Tokumaru and Dimotakis
(1991). Choi et al. (2002) reported that Re ¼ 1000 can reduce the drag
(about 60%) much more than the case of Re ¼ 100 (about 12%). Con-
cerning the vortex shedding phenomenon, several numerical studies
have been conducted such as those by Baek and Sung (1998, 2000) who
studied “lock-on” and “non lock-on” states with an extension to primary,
secondary and tertiary lock-on states of lift coefficients. Chang et al
(Cheng et al., 2001) applied hybrid vortex method (Cheng et al., 1995) to
investigate the influence of oscillation parameters in the “lock-on” and
“non-lock on” regimes on the wake structures, pressure distributions and
other forces on the cylinder at Re¼ 1000. In addition, the flow behind an
oscillating cylinder has been a model of flow for control and optimization
(see He et al. (2000), Srinivas and Fujiswa (Srinivas and Fujisawa (2003),
Haji and Janajrich (Janareh and Haji, 2008), Al-Mdallal (Al-Mdallal and
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Kocabiyik (2006), Al-Mdallal (2012), Lee and Lee (2006, 2008), Lu et al.
(2011, 2016), Kumar (2016), Mahfouz and Badr (2000a, 2000b), and
Sellappan and Pottebaum (2014), Baranyi (2009)).

The main objective of this paper is to numerically investigate the
development of the near wake structure behind the circular cylinder
undergoing rotational oscillations about its axis in the presence of a
uniform stream of a viscous, incompressible fluid. Self-excited oscilla-
tions are exhibited by the flow with no external forcings, i.e. Ka0rma0n
vortices are shed downstream. However, with an external forcing, vortex
shedding is entrained with the motion of the cylinder. Hence, the vortex
shedding frequency changes to match with the forced frequency of the
cylinder. This phenomenon is termed as “lock-on”, when the self-excited
oscillation synchronizes with the forced frequency of the cylinder pro-
vided the two frequencies are close (the primary lock-on). If the two
frequencies are not close enough, a quasi-periodic or chaotic oscillation
may occur. It has been observed that the entrainment still occurs when
the frequency ratio, f=f0, is in the neighbourhood of an integer or a
fraction. Such an entrainment is termed as “super-harmonic” or “sub-
harmonic” lock-on respectively. These frequency-lock-on regions are
determined using the near-wake vorticity contours, power spectra of
unsteady lift coefficient and phase diagrams (velocity end-point diagram
in u� v plane) at one point in the near wake. The modes of vortex
shedding in the lock-on regions are presented and classified at a fixed
value of Reynolds number Re ¼ 200 and maximum angular velocity
αm 2 ½0:5;6:0�. The ratio of forced oscillation frequency, f, to Ka0rma0n

vortex shedding frequency, f0 is chosen from f=f0 ¼ 0:5 to 3, to classify
the regions of fundamental, sub-harmonic and super-harmonic syn-
chronization. The variation of forces acting on the cylinder as a function
of forced oscillation frequency and maximum angular velocity is studied
in detail.

In this paper, vortex shedding modes are referred according to the
number of vortices shed from each side of the cylinder over the vortex
shedding cycles in a lock-on period, Tl ¼ nT, where n is either a fraction
or an integer number. Here, T is the oscillation period of the cylinder and
Tl is defined as the period of lock-on. For example, 2Smode per Tl means
that alternate counter-rotating single vortex is fed into the downstream
wake from each side of the cylinder over Tl. It should be noted that the
designation 2S per Tl, when Tl ¼ T refers to the classical Ka0rma0n vortex
street. However, the mode P þ S per Tl mode means that two vortices are
shed from one side of the cylinder followed by a single vortex from the
other side per Tl. The phenomenon involving the merging of vortices
immediately behind the cylinder in the vortex shedding layers is also
considered in this study. Following the notation of Reid (2010), this
coalescence occurrence is denoted by an uppercase “C” that is written
before the vortex shedding mode. For example, the designation C(2S) per
Tl means that the alternate counter-rotating single vortex is shed from
each side of the cylinder over Tl, where at least one of the shed vortices
was formed by the coalescence of vortices either immediately behind the
cylinder or within about 15 diameters. In addition, under certain cir-
cumstances, a switching in the vortex shedding mode in the near wake
region may occur. Thus, a switching in the vortex shedding mode from
A-mode to B-mode is denoted by A → B. It is worth mentioning that, in
classifying these modes, only the near wake region is considered
following the work of Ongoren and Rockwell (1988), while the notations
of Williamson and Roshko (1988) are used. Notice that vortex shedding
classification terminology employed has been recently used by several
researchers such as Al-Mdallal et al. (2007), Al-Mdallal (2015) and
Reid (2010).

The paper is arranged in the following sequence. In Section 2, we
discuss the governing equations along with initial and boundary condi-
tions. Section 3 deals with numerical algorithm and their finite difference
discretizations. Section 4 deals with validation of our numerical scheme
followed by results and discussion in Section 5. At the end, we summarize
our observations in the concluding remarks.

2. Governing equations

We consider the two-dimensional unsteady, incompressible, viscous
flow of a constant property Newtonian fluid over an infinitely long cyl-
inder, whose axis coincides with the z-axis, placed horizontally in a cross-
stream of an infinite extent. The two-dimensional flow configuration of
the physical model is shown in Fig. 1. The fluid has a uniform streamwith
velocity U∞. Here, R0 denotes the radius of the circular cylinder, and R∞

denotes radius of the circular far field boundary. At dimensional time
τ ¼ 0, the sinusoidal rotational oscillation of the cylinder starts suddenly

Nomenclature

R0 radius of the circular cylinder
R∞ radius of the circular far-field boundary
U∞ free stream velocity
~α dimensional oscillatory velocity
α dimensionless oscillatory velocity (¼ R0~α=U∞ )
~αm dimensional maximum angular velocity
αm dimensionless maximum angular velocity (¼ R0~αm=U∞)
~f dimensional oscillation frequency
f dimensionless oscillation frequency (¼ R0

~f=U∞ )
f0 natural frequency of vortex shedding

τ dimensional time
t dimensionless time (¼ τU∞=R0 )
Re Reynolds number(¼ 2R0U∞=νÞ
T oscillation period of the cylinder
ν kinematic viscosity of the fluid
CL lift coefficient
CD drag coefficient
r; θ Polar coordinates
~ψ , ψ dimensional and dimensionless stream functions
~ω, ω dimensional and dimensionless vorticities
~u, u dimensional and dimensionless radial velocities
~v, v dimensional and dimensionless tangential velocities

Fig. 1. The physical model and coordinate system of the flow domain.
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