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In order to accelerate the access into the energy market for ocean renewables, the operation and maintenance
(O&M) costs for these technologies must be reduced. In this paper a reliability-based simulation tool for the
optimization of the management of an offshore renewable energy (ORE) farm is presented. The proposed tool
takes into account the reliability data of the simulated devices and estimations on the energy produced to create a
series of results in terms of availability and maintainability of the farm. The information produced supports
operational and strategic decision making regarding the O&M for offshore farms. A case study simulating a

conceptual tidal energy project, consisting of an array of two tidal turbines located off the north coast of Scotland,
is presented to show some of the results achievable with this model. The proposed methodology, although
adopted for a tidal farm here, is generally applicable to other kinds of ORE farms.

1. Introduction

Offshore renewables hold large potential to contribute to the future
renewable energy mix. In order to do so, the costs associated with the
deployment of offshore devices need to be strongly reduced and these
have to become competitive in respect to other technologies. By defini-
tion, O&M is a combination of all those practical and administrative
actions, undertaken in a complex decision-making process, which aim to
keep a system, subsystem or single component as efficient and productive
as possible during its life cycle. O&M represents a major share of the total
unit energy cost (Nielsen and Sorensen, 2011), reaching peaks of 30% of
the total cost of a project. Improving O&M practices and taking design
choices that facilitate operational requirements has been therefore
indicated as one of the most cost effective approaches for mitigating the
financial risks of offshore infrastructures (Shafiee and Kolios, 2015). As
can be expected, maintaining the considered system in an operating state
for a longer time, increasing in this way the availability of the device,
means a higher amount of energy produced and consequently greater
revenue. However, an increase in availability is obtained through an
increase in maintenance efforts and, as a consequence, in maintenance
costs (Rinaldi et al., 2016a). Therefore, selecting the most appropriate
maintenance strategy among the many options available is not a
straightforward task. Comprehending the dynamics of the farm, taking
into account the interactions among different components and all the
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unexpected events may be extremely challenging. In addition, planning
and scheduling of the O&M activities are extremely dependent on the
project and especially the technology considered. For example, the
accessibility challenges to take into account for interventions on offshore
wind turbines, where wave and wind conditions are fundamental, are
different from those to consider for tidal turbines fixed to the sea bed,
where tide level and water current are of primary importance. This, or
other factors like the failure behaviour and the experience previously
acquired with similar devices, have important repercussions on the
choice of the proper assets, and as a consequence on the input set to
consider for the effective modelling of the farm. Under these circum-
stances, a number of computational tools have been developed to address
this problem and characterize the operational expenditures of an ORE
farm, mainly for the offshore wind industry. Most of these models aim to
estimate the costs related to the deployment of the farm exploring the
different options available and investigating different maintenance re-
gimes. One part of these tools has been developed exclusively as a
commercial product, in order to assist farm operators in the monitoring
of the O&M procedures and the control and optimization of the cost
(Braam et al., 2011; Dinwoodie et al., 2015; Hofmann and Bakken,
2013). Other models have been proposed in the research literature to
contribute to the general knowledge in this area and solve specific tar-
geted problems. Among these, the assessment of the influence of weather
forecast uncertainties (Ambiihl et al., 2016), the applicability of these
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tools to combined offshore platforms (Mcauliffe et al., 2015), their
integration with other techniques (Martin et al., 2016) and the accurate
estimation of the charter rate for the access systems, i.e. vessels and
workboats (Dalgic et al., 2013; Dalgic et al., 2015a). But operating con-
ditions can be investigated also in more generic terms. For example these
can be referred to device design choices, offshore locations, crew
employed or, more in general, maintenance strategies (Dalgic et al.,
2015b). A thorough review of the models for offshore wind farms
belonging to both categories has been provided by Hofmann (Hofmann,
2011). Here, these are arranged in different categories depending on
their central purpose, i.e. the main aspect or cost driver to characterize.

Thus, the objective of this paper is to provide a novel contribution to
the existing range of computational O&M tools, showing the properties of
the developed toolbox and especially how the results obtained with this
can be used to support the decision-making process, as well as improve
the cost efficiency, of offshore renewables. Focus is given towards the
reliability characterization of the device, and the support this can provide
in the effective planning and optimization of the power production, with
the final aim of reducing the cost of the energy produced.

In the next section 2 the full methodology adopted will be introduced.
A case study to show the modelling and optimization possibilities will be
presented in the following Section 3. Results will be shown and discussed
in Section 4. Future work and optimization proposals will be anticipated
in Section 5. Finally, conclusions are drawn in the last Section 6.

2. Methodology

This section describes in detail the offshore O&M tool implemented.
Specifics are provided on the input variables required to start the simu-
lations, together with the mechanisms and constraints that regulate their
evolution with time. In addition, a full description of the outputs ob-
tained and their use in the strategy planning is presented.

2.1. The offshore O&M tool

A number of probabilistic evaluation techniques exist to model the
systems' reliability and provide an assessment of the maintenance proced-
ures. However, if the modelling of random processes (e.g. unexpected fail-
ures) is the objective, Markov chains and Monte Carlo simulation are the
most diffused approaches (Hofmann, 2011; Alexander, 2003) due to their
degree of flexibility and level of understanding provided. Monte Carlo
techniques are a set of non-deterministic mathematical models based on the
random sampling of determined quantities. In reliability engineering,
Monte Carlo analysis uses reliability data and statistical distributions to
define the behaviour of the system over the considered period of time. A
time domain approach based on this technique has been adopted to develop
the O&M tool presented in this work. This exploits the generation of random
numbers for a sufficient number of times (i.e. for each timestep and each
component of the simulated lifecycle) in order to cover all the possibilities
and provide unbiased results (Rinaldi et al., 2016b). The idea of thismodel is
that by exploiting the metocean data (hindcast or synthetic) of the location
where the offshore farm is or will be located, together with all the specifi-
cations of the projects in terms of devices, vessels and maintenance strate-
gies, it is possible to obtain a series of results that can be analysed in an
iterative procedure to characterize the dynamic of the farm and optimise the
planning actions. To do so, the model takes into account a large number of
inputs, mechanisms and constraints according to the Structured Analysis
and Design Technique (SADT) (Karyotakis, 2011), a computational practice
used to describe complex systems and which operates on the general basis
shown in the diagram in Fig. 1.

All the inputs, constraints, mechanisms and outputs considered in this
tool will be introduced in the following subsections.

2.1.1. Inputs
The main inputs that the model requires to perform the simula-
tion are:
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Fig. 1. Graphical representation of SADT.

Number and power rating of the devices. The number of devices that
constitute the offshore farm, but not their disposition in the array, must
be specified together with the energy converter reference power per-
formance. This last is a power curve in the case of an offshore wind
turbine (OWT) and a marine current turbine (MCT); conversely, it is a
power matrix in the case of a wave energy converter (WEC).

Metocean data. The model uses the time-series of the resource data
principally to produce the energy estimations of the farm and secondarily
to calculate the accessibility of the maintenance vessels respecting their
limits and weather windows length. These time-series can be either
hindcast or synthetic forecast data, referred to wind, wave and current
characteristic parameters. No restrictions exist on the maximum or
minimum length of the timestep that separates two consecutive values.

Failure distributions. The occurrence of a failure is a probabilistic event
whose likelihood depends on many factors, either intrinsic to the nature
of the considered system (or single component) and due to external cir-
cumstances. The first somehow reflect the quality of the materials, en-
gineering skills and manufacturing processes adopted to obtain the item;
the second represent the effects of environmental factors, loads and usage
conditions. The model takes into account both these kinds of mechanism
that lead to a failure. In order to allow for the intrinsic aspects of a
component its failure rate has to be considered, taken as the frequency of
failures over a given period. This value has to be established with data
obtained in previous experiences with the same component (Carroll
et al., 2015) or, when this is not available, adapted from existing data-
bases (Norske Veritas, 2002) or surrogate data using the engineering
judgement. A combination of both methods is the most effective choice in
order to adapt longstanding databases to a specific context. This is
particularly important in the case of marine energy devices, which are
generally characterized by limited experience. In addition, this value can
be constant or variable depending on the age of the specific component in
the considered system and the probabilistic distribution chosen to
represent its failure behaviour. A classic example to show this concept is
the well-known bathtub curve (Klutke et al., 2003), shown in Fig. 2,
which gives a clear illustration of the variation of failure rate i(t) over
time for a generic component.
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Fig. 2. Bathtub curve, representing the generic variation of the failure rate with time.
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