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A B S T R A C T

This paper describes the formulation and verification of a 3D non-hydrostatic free surface water flow model with
a Finite Volume Method (FVM) on unstructured grids. The model extends the Non-linear Shallow Water (NSW)
equations by utilizing a non-hydrostatic pressure term for describing dispersive water waves. In order to
simulate the near-shore wave dynamics, the wave breaking is modeled using a so-called splitting algorithm in
the present model. When a wave is ready to break, the non-hydrostatic model is locally switched to the
hydrostatic model to suppress the dispersive effects. The breaking wave front is analogy to a moving hydraulic
jump, and is treated as a shock with its energy dissipation implicitly evaluated according to the shock-wave
theory. The wave breaking is then simulated by solving the conventional NSW with a 2nd order Total Variation
Diminishing (TVD) scheme. Extensive case studies are carried out to verify the efficiency and accuracy of the
model. The numerical simulations are found to agree well with the experimental measurements.

1. Introduction

Many flows in natural environments are confined between a solid
bed beneath and a free surface above the water body. These flows are
common in oceanic shelves, estuaries, and rivers, and they are
generally referred to as shallow water flows (Borthwick and Barber,
1992; Fringer et al., 2006; Liang et al., 2006; Zhang and Liu, 2009).
Such flows are traditionally described by the Non-linear Shallow Water
equations (NSW). Researchers have made significant progress to solve
this kind of models. The efficient solutions of the NSW enable the
modeling of large-scale long wave dynamics, such as tides, storm
surges, and tsunamis. Despite the advancements, the difficulties in
connection with breaking and dispersive waves in the near-shore
region remain unresolved.

To improve the handling of dispersive water waves, the NSW has
been developed to account for the non-hydrostatic pressure distribu-
tion. Casulli (1999) and Casulli and Zanolli (2002) reported a fully-
hydrodynamic pressure treatment that expresses the pressure as a sum
of the hydrostatic and non-hydrostatic constituents. Jankowski (1999)
presented the details of a predictor-corrector method for the calcula-
tion of the pressure field. Such a non-hydrostatic model has been
widely implemented in the Cartesian coordinate system (Li and
Fleming, 2001; Kocyigit et al., 2002; Chen, 2003) and the unstructured
grid system (Fringer et al., 2006). The models of this kind have been

used to simulate dispersive waves and flows in the domains with
complex geometries (Zhang et al., 2014).

The non-hydrostatic model enables the expansion of the application
of the NSW from long waves to relatively short waves, i.e. from non-
dispersive waves to dispersive waves. However, few applications to the
near-shore region have been carried out by this kind of models because
of their inability to handle wave breaking. To model wave breaking, the
Navier-Stokes equations with Volume of Fluid (VOF) treatment is able
to simulate the complex free surface transformation and breakage, but
the high computational costs restrict their practical applications
involving natural coasts. Besides of the VOF method for capturing
the free surface, the Smoothed Particle Hydrodynamics (SPH) model is
a powerful, but computationally-demanding, mesh-free technique for
simulating free surface flows, with violent breaking waves (Liang,
2010; Pu et al., 2013; Chen et al., 2015). Compared with the highly
accurate numerical models capable of representing the full spectrum of
wave dynamics, the Non-linear Shallow Water equations (NSW) and
Boussinesq-type (BT) models are still more widely used for simulating
the near-shore wave dynamics because of their lower computational
costs. However, the NSW cannot represent wave dispersion and the BT
models cannot handle wave breaking. The earlier methods of modeling
the wave breaking with the BT models are by means of introducing an
extra wave energy dissipation term in the governing equations (Zelt,
1991; Karambas and Koutitas, 1992; Schäffer et al., 1993; Kennedy
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et al., 2000; Cienfuegos et al., 2010). Recently, a family of fully-
nonlinear BT model were proposed for simulating wave breaking with a
splitting algorithm (Bonneton et al., 2011b; Tissier et al., 2012). The
idea is to switch the numerical model from the BT equations to the
NSW equations when the waves are about to break. In this way, the
non-physical dispersive behavior of waves at steep water surface
gradients is avoided and the mechanical energy dissipation associated
with the wave breaking is modeled by the shock theory. Similar ideas
have been adopted in non-hydrostatic models. Ma et al. (2012)
described a NHWAVE non-hydrostatic numerical model for simulating
the wave dynamics in the surf and swash zones, based on a type of
combined FVM and FDM on structured grids. The NHWAVE model is
extended to simulate breaking waves using shock-capturing schemes.
The similar numerical method was also adopted by Pieter et al. (2013,
2014) in a vertical 2D non-hydrostatic model for investigating coastal
processes, and by Wei and Jia (2014) in a non-hydrostatic finite
element model for studying coastal waves. Coupled with an efficient
numerical technique to handle wave breaking, the non-hydrostatic
models are expected to be supervisor to the depth-integrated models in
modeling coastal wave dynamics.

In this paper, an in-house code named HydroFlow® was developed,
which is a 3D non-hydrostatic FVM model on unstructured grids.
Similar to the splitting algorithm used in the BT model, the non-
hydrostatic equations are replayed by the hydrostatic equations at the
local wave front when wave breaking occurs. Several case studies with
available experimental data are used to validate the present model's
performance in predicting wave transformation, breaking and run-up
on beaches.

2. Numerical model

2.1. Governing equations

The non-hydrostatic pressure distribution is implemented in the
model by representing the total pressure as a superposition of the
hydrostatic component ph and the non-hydrostatic pn component
(Casulli, 1999). In order to accurately capture the shapes of the free
surface and the uneven bottom boundary, the vertical coordinate z is
transformed to the σ coordinate, and the transformed equations can be
rewritten as:
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where q Du q Dv q Dw q Dω= , = , = , = ∼
x y z σ , u v w, , are the velocities in

x y z, , directions, respectively, and the velocity along the σ coordinate is
calculated as:
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In the above equations, g is gravitational acceleration, f ω ϕ= 2 sin
is the Coriolis force coefficient, ϕ is the latitude, ω is the Earth's angular
speed, ζ is the free surface elevation, h is the still water depth, and
D h ζ= + is the total water depth. When the non-hydrostatic pressure
pn is ignored, then the vertical momentum equation should be also
neglected. Then, the system described by Eqs. (1)–(4) degenerates to
the conventional shallow water model that consists of only the
horizontal momentum equations and the continuity equation.

2.2. Turbulence model

To close the system, the eddy viscosity concept is adopted in the
present study and the eddy viscosity coefficient υt is determined using
the one-equation Spalart-Allmaras (SA) model (Spalart et al., 2000).
The transport equation for υ∼ is:
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and d is the distance to the nearest solid wall. The model constants are:
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The eddy viscosity υt is then computed according to:

υ υf= ∼
t v1 (7)

2.3. Numerical scheme

The numerical model is based on the multi-layered discretization
on unstructured grids and the σ-coordinate transformation in the
vertical direction, as shown in Fig. 1. On the cell faces, a non-
orthogonal horizontal local coordinate system ξ η( , ) is used to replace
the global Cartesian coordinates x y( , ). The derivatives of a function φ
on the cell face are carried out in the local coordinates, which are
presented as:

ϕ
J

ϕ y ϕ y ϕ
J

ϕ x ϕ x J x y x y= 1 ( − ), = 1 ( − ), = −x ξ η η ξ y η ξ ξ η ξ η η ξ (8)

where ξ is directed from a Control Cell (CC) center to a Neighboring
Cell (NC) center across the common face, and η is directed along the
common boundary and in the anticlockwise direction around the ξ

(a) CC-control volume center     (b) NC-neighbor cell center 

Fig. 1. Local coordinates of the control volume. (a) CC-control volume center (b) NC-
neighbor cell center.

J. Zhang et al. Ocean Engineering 140 (2017) 19–28

20



Download English Version:

https://daneshyari.com/en/article/5474128

Download Persian Version:

https://daneshyari.com/article/5474128

Daneshyari.com

https://daneshyari.com/en/article/5474128
https://daneshyari.com/article/5474128
https://daneshyari.com

