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Dynamic analysis and design of slender structures subject to different types of applied forces is of considerable
practical interest in ocean engineering and aerospace applications. In this paper, the stability of pipes subjected
to influences induced by fluid flow is investigated by using IsoGeometric Analysis (IGA). IGA aims to use the
exact Computer-Aided Design (CAD) geometry and reduce the geometrical errors introduced by approximation
of the physical domain of the problem. It uses B-Splines and Non-Uniform Rational B-Splines (NURBS) as basis
functions and provides several advantages, which make it suitable for efficient and accurate simulations. The
mathematical formulation of the problem is developed based on the Euler-Bernoulli beam theory (EBT) and the
plug-flow model for the fluid forces. Both divergence and flutter instabilities are investigated. The numerical
results are compared with those obtained by other available methods and it is shown that the results are in good
agreement with lesser number of degrees of freedom, which is a fundamental criterion for the computational
cost of an analysis. It is also confirmed that the IGA as described in the present paper, can be used efficiently to
predict the possibility of divergence and coupled-mode flutter in dynamic analysis of pipes conveying fluid.

1. Introduction

The stability of slender structures conveying fluids has been of
considerable interest for engineers and designers over the past century.
Some engineering applications include oil and hydraulic pipelines, heat
exchangers, liquid-fuel piping systems, air-conditioning ducts, offshore
piping, etc. (Rafiei et al., 2012; Ibrahim, 2010). A particular area of
interest that has received extensive attention over the past few decades
is the stability of pipes conveying fluid. The dynamic interaction
between the fluid and the pipe causes energy to be transferred to the
pipe and the pipe becomes unstable after a sufficient amount of energy
exchange. The main reasons for special attention to the problem of
pipes conveying fluid are their (i) simplicity and (ii) possible use in
understanding the theoretical and experimental response of more
complicated systems (Paidoussis, 2014).

Over the past sixty years, dynamics of fluid-conveying pipes have
been studied by different analytical, numerical and experimental
methods for a wide range of boundary conditions and loadings
(Ibrahim, 2010; Aldraihem, 2007; Zhang et al., 2016). Notable con-
tributions to the problem have been done by Paidoussis and his
coworkers (Modarres-Sadeghi and Paidoussis, 2009). The dynamic
analysis is usually conducted using the Euler-Bernoulli beam theory

and different solution methods can be used for vibration analysis of the
problem (e.g., Finite Element Method (FEM)). Several finite element
models for the fluid-structure interaction analysis of liquid-filled pipes
have also been developed by many authors (e.g., Hansson and
Sandberg, 2001; Stangl et al., 2009 and Zare et al., 2011).

With the progress of advanced computational tools, more efficient
numerical methods can be developed for computation of structural
vibrations (Kazemzadeh-Parsi and Daneshmand, 2013; Daneshmand
and Kazemzadeh-Parsi, 2009; Kazemzadeh-Parsi and Daneshmand,
2012). Development of such computational tools is normally based on
Computer-Aided Design (CAD) whereas the resulting geometries are
used in both manufacturing processes and numerical calculations. A
new development of FEM has recently been proposed and called
Isogeometric Analysis (IGA). IGA is a new simulation technology which
uses the same class of basis functions for both representing the
geometry of the computational domain and approximating the solution
of the problem (Bazargan Lari, 2015). In other words, IGA aims to use
the exact CAD geometry and reduce the geometrical errors introduced
by approximation of the physical domain of the problem. This paper
focuses on the application of IGA in the analysis of transverse vibration
of pipes conveying fluid. The method, despite its young age, has been
significantly matured as a link between the finite element method and
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computer aided design (Wang et al., 2015; Chen et al., 2014). In spite
of the extensive achievements in dynamic analysis of fluid-structure
systems, the application of IGA in transverse vibration analysis of pipes
conveying fluid has not been reported so far. In this paper, a well-
known straight fluid-conveying pipe is modeled based on the Euler-
Bernoulli beam theory. Moreover, a short introduction on isogeometric
approach is provided and the main ideas behind this new method in
computational mechanics are explained. It will be shown that using
NURBS-based IGA discretization with higher smoothness improves the
solution accuracy and can be considered as a promising approach for
analysis of pipes conveying fluid.

The paper is outlined as follows: The theoretical background of IGA
is presented in Section 2. In Section 3, dynamical equations of in-plane
motion for a pipe conveying fluid is given in details. The isogeometric
weak formulation of the transverse vibration problem is also derived in
order to be used in developing the discretized equations in the matrix
form. In Section 4, the results obtained from the present formulation
are given and discussed. In order to validate the IGA computer code,
free vibration analysis of a rotation free (RF) Euler-Bernoulli beam
problem is considered and the results are compared with the FEM
solutions. Moreover, dynamic behavior of a clamped-clamped Euler-
Bernoulli pipe is considered and natural frequencies of the system are
calculated by using the isogeometric analysis developed in this paper.
The results of our calculations are also compared with those available
in literature. Finally, the characteristic equation of a pipe conveying
fluid is obtained from which the corresponding critical velocity of the
fluid flow and natural frequencies of the pipe are determined. The
concluding remarks are presented in the last section and the main
advantages of using the isogeometric analysis in vibration analysis of
pipes conveying fluid are summarized. In summary, it is shown that the
implementation of IGA and NURBS in dynamic analysis of pipes
conveying fluid results in higher convergence rates and highly accurate
results with fewer elements.

2. Theoretical background of isogeometric analysis

Development of IGA is fundamentally due to two important draw-
backs in using traditional numerical methods: (i) approximation in-
volved in the geometrical representation of the boundaries of the
problem domain, and (i) time consuming communications needed
between the discretized geometry and the analysis tool in order to
provide the adaptivity and refinement of the solution (Dede et al., 2012).
IGA uses the functions employed in CAD systems and is capable of
representing many engineering geometries exactly. It also simplifies
mesh refinement process and provides a unique geometric description
for all meshes with all orders of approximation. A primary tool in the
establishment of IGA is the non-uniform rational B-Splines (NURBS).
NURBS are a standard tool for describing and modeling curves and
surfaces with several interesting properties and can be used in design
and analysis of a wide range of problems in linear and nonlinear solid
and structural mechanics. Since B-Splines are the basis for building
NURBS, they are investigated first. Unlike the standard finite element
analysis in which the shape functions are defined over the elements, the
influence domain of B-Splines is described by patches. Patches are
subdomains on which the element types and material behavior are
assumed to be uniform. Each element in the physical space (£2*) is
mapped to its corresponding image element in parameter space (2 kj).
Furthermore, an element in parametric domain may be mapped into a
parent element (2°) in order to unify integration procedure on
elements (Fig. 1). It should be noted that mapping itself is global for
the whole patch, rather than for the elements themselves.

The NURBS basis functions are usually not interpolatory. This is in
contrast with the fundamental property of the shape functions in FEM.
Two types of meshes are defined in NURBS; control meshes and
physical meshes. Control meshes are defined by control points (CPs)
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Fig. 1. Geometrical and affine mappings for integration by Gaussian quadrature on
NURBS knot spans of pipe.

and do not necessarily conform to the actual geometry. In fact, they
control the geometry. Control variables are located at the CPs and can
be considered as degrees of freedom (DOF) (Piegl and Tiller, 1997).

2.1. Knot vectors

Knot vector is a set of non-decreasing coordinates in parameter
space, written as E = {&,5,,....6,4p+1}, where &€R is the M knot, i is the
knot index (i = 1,2....n + p + 1), p is the polynomial order, and 7 is the
number of basis functions utilized to construct a B-Spline curve.
Parameter space is divided into elements using knots. Element
boundaries in the physical space are simply the images of lines
constructed between knots under B-Spline mapping.

Knot vector may be uniform, if the knots are equally spaced in the
parameter space, and non-uniform if they are unequally spaced. Knot
values may be repeated. Number of the value repetition of a knot is
called multiplicity of a knot and plays an important role in implement-
ing basis functions (Cottrell et al., 2009). A knot vector is said to be
open if its first and last knot values appear p + 1 times. A basis function
which is formed from an open knot vector is interpolatory at the ends
of the parameter space interval. This is an interesting and distinguish-
ing feature between “knots” in IGA and “nodes” in Finite Element
Analysis (FEA) (Juttler et al., 2015).

2.2. Basis functions
B-Spline basis functions are recursively defined by using an

available knot vector. The first basis function is written with piecewise
constants (p = 0) as,

Lif §<& < &
N =
0©) {O otherwise (D
For p = 1,2,3,..., the B-Spline basis functions are defined as
f - fi §i+p+l - f
Nip(§) = —Nip 1)+ ———Niy1p-1(6)
i Gip— & 7 : Eivpr1 — G e 2)

Eq. (2) is referred to as the Cox—de Boor recursion formula
(Piegl and Tiller, 1997; Hughes et al., 2005).

Among many useful properties of B-Spline functions, the following
properties are more interesting:

Piecewise polynomials of degree p: N, i=1...n.

Compact support: supp(N;,) = [§i&isp+1), 1 = 1,....1.

Non-negativity: N, (£)>0, Vé€[£,6], i = 1,...,n.

Partition of unity: For an open knot vector, 37| N, ,(£)=1
Continuity: The basis functions N, are p times continuously
differentiable (C?-continuous) inside a knot span, and at inner knots
of multiplicity k (k < p), they are only CP~*.

Some examples of B-Spline functions are shown in Figs. 2 and 3.

Now let N%) denote the kth derivative of N;,(£). Repeated differ-
entiation of Eq. (2) produces the general formulation as follows
(Piegl and Tiller, 1997; Hughes et al., 2005):
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