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A B S T R A C T

In this article, a method to model wave diffraction and radiation by bodies of arbitrary shape over a variable
bathymetry is developed. The effect of the bottom on the waves is modelled through the elliptic mild-slope
equation, while the effect of the bodies through so-called diffraction transfer matrices. The numerical treatment
proposed to solve the mild-slope equation is based on a finite-element discretisation of the fluid domain outside
the bodies, while these are replaced by vertical surfaces over which analytical solutions exist. The solutions are
then combined with diffraction transfer matrices to develop the required boundary conditions at the bodies. Full
reflection and Sommerfeld's radiation condition at sea, where the water depth is assumed constant, are taken
into account to fully determine the numerical solution. The method is further verified against exact solutions to
the problem of tsunami response of a cylindrical island over a parabolic shoal, and the problem of wave
diffraction by an array of truncated vertical cylinders over a flat bottom. Comparison between exact and present
method wave amplitude solutions for the two problems show good agreement. Finally, the effects of a
submarine plateau and a fully reflective coast on the wave diffraction and radiation by an array of surging barges
are discussed.

1. Introduction

Most of human activities at sea are facilitated by the use of some
type of marine structure, such as ships for ocean transportation, wind
turbines for offshore wind energy exploitation, or wave energy con-
verters for wave energy exploitation. The design of such structures
nowadays involves using numerical tools that can model the interaction
between the ocean waves and the structures. In the design of wave
energy converters, linear wave models have been extensively used. This
is because they are easier to solve than higher-order models and
because the electric power produced by such devices stems largely from
linear waves, i.e., waves with small amplitude compared to the
wavelength and the water-depth; as these are the most frequent waves
at sea. Under the action of such linear waves, the response of wave
energy converters has been generally modelled as small amplitude
oscillations compared to the wavelength and the water-depth. This is
valid for a certain range of wave-frequencies; however, it becomes less
accurate as the wave-frequency is closer to the resonance frequency of
the devices.

There are three wave phenomena that are relevant when a linear
wave intercepts a group of wave energy converters (solid bodies) over a
variable bathymetry; these are known as wave refraction, diffraction

and radiation. Wave refraction occurs due to varying water-depth,
causing the wave to propagate at different velocities. Wave diffraction,
on the other hand, occurs due to the presence of solid bodies as the
water cannot flow through. Finally, wave radiation stands for the waves
generated by solid bodies when moving about.

In the context of linearised potential flow and small body motions,
the problem of combined wave refraction, diffraction and radiation
may be formulated as a boundary value problem, which can be solved
numerically, e.g., by the finite element method or the boundary
element method. These two methods were proposed in Yue et al.
(1978) and Matsui et al. (1987), respectively, in combination with an
analytical representation of the wave-field outside a fictitious cylinder
enclosing the bodies and the variable bathymetry, where the water-
depth was assumed constant. In Belibassakis (2008) and Belibassakis
et al. (2016), the boundary element method was also proposed,
although unlike in Yue et al. (1978) and Matsui et al. (1987), the outer
boundary was not required to be at constant water-depth.

Further, under the assumption of slowly varying water-depth, the
boundary value problem reduces to the so-called mild-slope equation
(Berkhoff, 1972). The mild-slope equation is desirable, when applic-
able, as it only needs to be solved in the horizontal plane. However,
because of its two-dimensional nature, it can only handle wave
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diffraction by vertical walls and wave radiation due to horizontal
displacements.

In order to extend the range of applicability of the elliptic mild-
slope equation, the two-dimensional field equation, combined with the
finite element method, and the full three-dimensional boundary value
problem, applied only in the vicinity of the structure, were successfully
coupled in Takagi and Naito (1994), Ohyama and Tsuchida (1994) and
Cecioni and Bellotti (2016). The boundary element method was chosen
in Takagi and Naito (1994) and Ohyama and Tsuchida (1994) to find a
solution of the boundary value problem around the structure; con-
tinuity of solutions further led to the necessary boundary conditions for
the coupling with the mild-slope equation model. On the other hand, a
linear model based on Robin-type boundary conditions was chosen in
Cecioni and Bellotti (2016) for the coupling instead, while the model
coefficients were adjusted beforehand so as to fit the solution of the
boundary value problem for the isolated structure. The accuracy of the
matching between the mild-slope equation and the three-dimensional
solutions in Takagi and Naito (1994), Ohyama and Tsuchida (1994)
and Cecioni and Bellotti (2016) was though compromised by a
minimum separation between the body and the interface where the
matching was enforced.

The method presented in this paper aims to pose an alternative to
those in Takagi and Naito (1994), Ohyama and Tsuchida (1994) and
Cecioni and Bellotti (2016). This is done by adapting some of the main
components of the so-called direct matrix method (Kagemoto and Yue,
1986) to the elliptic mild-slope equation. The direct matrix method
have already been implemented into the DTOcean (Optimal Design
Tools for Ocean Energy Arrays) software Optimal design tools for ocean
energy arrays, for the modelling of wave diffraction and radiation by
wave energy converter arrays; however, it is based on the assumption
of constant water-depth. Therefore, the present method enables the
modelling of wave energy converter arrays over a variable bathymetry
from the already existing tools (Mercadé Ruiz et al., 2017) embedded in
the DTOcean software.

Wave diffraction and radiation by bodies of arbitrary shape are
thereby integrated with the elliptic mild-slope equation. However, here,
an analytical representation of the diffracted (and radiated) wave-field
near the body along with the single-body diffraction (and radiation)

characteristics suggested in Kagemoto and Yue (1986) are used to
produce the necessary boundary conditions for the coupling with the
mild-slope equation. The present method is further combined with the
techniques developed in McNatt et al. (2015), implemented into the
DTOcean software, to facilitate the calculation of the single-body
diffraction (and radiation) characteristics and the calculation of post-
processed wave forces. In addition, by using these techniques, the
accuracy of the matching between the mild-slope equation and the
three-dimensional solutions is not compromised by a minimum
separation between the body and the matching interface.

The work presented in this paper is structured in five sections.
Section 2 provides the equations for the modelling of combined
refraction-diffraction-radiation. Section 3 provides a numerical scheme
for the solution of the problem of combined refraction-diffraction-
radiation. Section 4 is devoted to the verification of the method by
comparing the wave-field solved by the present method with that
solved analytically for two different test problems. In addition, two
more test problems are discussed in Section 4 which illustrate the
applicability of the method. Finally, Section 5 discusses the adequacy of
the choice of the method parameters and provides recommendations
for the scalability of the results.

2. Method formulation

Consider a harmonic wave travelling towards a group of I three-
dimensional bodies. The wave transformations caused by the presence
of the bodies (diffraction), the motion of the bodies (radiation) and the
variable bathymetry (refraction) are addressed in this section.

In the context of potential flow theory, the wave-field can be
represented by the velocity potential Φ, whose gradient yields the fluid
velocity vector. In addition, since only harmonic waves are considered,
it seems convenient to represent the potential using complex notation,
i.e., Φ ϕ= ( e )ωt−iR ; where ω π T= 2 / is the wave angular frequency, T is
the wave-period, i = −1 is the imaginary unit, t is time, and ϕ is the
complex amplitude of the potential.

The potential must then satisfy the conservation of mass equation
at any point in the fluid domain, yielding the well-known Laplace's
equation:
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Fig. 1. Illustration of the problem variables for the modelling of combined refraction-
diffraction. ψni represents the part of the waves entering the vertical surface Li, whereas

Ψni represents those leaving it.

Fig. 2. Illustration of the problem variables for the modelling of combined refraction-
diffraction in the two-dimensional finite domain x y Ω( , ) ∈ . φ0 represents the part of the

waves entering the vertical surface L0, which sets the boundary with the open sea.

P. Mercadé Ruiz et al. Ocean Engineering 143 (2017) 163–176

164



Download English Version:

https://daneshyari.com/en/article/5474183

Download Persian Version:

https://daneshyari.com/article/5474183

Daneshyari.com

https://daneshyari.com/en/article/5474183
https://daneshyari.com/article/5474183
https://daneshyari.com

