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A B S T R A C T

An enhanced coupling strategy for the resolution of 6–degrees–of–freedom rigid body motion and unsteady
incompressible fluid flow in Finite Volume collocated arrangement using PIMPLE algorithm and rigid mesh
motion is presented in this paper. The improved coupling is achieved by calculating the 6–degrees–of–freedom
motion equations after each pressure correction step in the pressure–velocity PISO (Pressure Implicit With
Splitting of Operators) algorithm. Solving the 6–degrees–of–freedom equations after each solution of the
pressure equation of the PISO loop accelerates the convergence, leading to smaller number of nonlinear
pressure–velocity iterations needed per time–step. The novel approach is verified and validated on a heaving
decay case, while the achieved acceleration in terms of the number of PISO loops is demonstrated on seakeeping
simulations of a container ship.

1. Introduction

Numerical simulations using Computational Fluid Dynamics (CFD)
are frequently used in computational naval hydrodynamics for asses-
sing wave induced loads and motions (Larsson et al., 2013, 2015a,
2015b). There are numerous reasons why wave induced loads and
motions of floating objects are important in marine engineering. Fuel
consumption of ships sailing in waves is one of them, due to the
increase of oil price during the last couple of decades, as well as the
increasingly rigorous regulations regarding harmful gas emission.
Seakeeping characteristics of ships are important for safety and
comfort of crew and passengers, as well as for assessing acceleration
loads (e.g. heavy deck equipment, superstructures etc.).

CFD is proving to be a useful tool in predicting behaviour of ships in
waves. Numerous publications (e.g. Orihara and Miyata, 2003; Carrica
et al., 2008, 2011, 2012; Bhushan et al., 2009; Kim, 2011; Castiglione
et al., 2011; Wu et al., 2011; Guo et al., 2012; Miyata et al., 2014;
Mousaviraad et al., 2015; Sadat-Hosseini et al., 2013; Simonsen et al.,
2013; Tezdogan et al., 2015) tend to depict the accuracy and potential
of CFD for solving such problems, using different ways to couple 6–
degrees–of–freedom (6–DOF) motion and fluid flow. The coupling of
body motion and fluid flow is commonly performed on the level of the
nonlinear pressure–velocity loop (SIMPLE or PIMPLE), i.e. after the
flow solution rigid body motion equations are solved and the computa-
tional grid is moved accordingly. The procedure is then repeated within

each time–step until convergence. This is the conventional strongly
coupled approach, hereinafter referred to as conventional approach.
The PIMPLE algorithm is comprised of multiple PISO pressure–
velocity loops, where pressure is updated multiple times per one
momentum equation–update (Issa, 1986).

The above mentioned, conventional approach has been verified in
numerous publications. Orihara and Miyata (2003) use a predictor–
corrector algorithm for the in–house code WISDAM–X, where they
recalculate the entire flow field after every body motion correction.
Castiglione et al. (2011) imply that the in–house code CFDShip-Iowa
uses a similar approach, where the complete fluid flow solution is
obtained in each body motion–fluid flow iteration. Wu et al. (2011)
describe the execution sequence of the CFD code used in their study
where a similar procedure is employed. To achieve convergence of the
coupling, multiple body motion–fluid flow iterations are needed.
Simonsen et al. (2013) and Vukčević and Jasak (2015) reported that
a minimum of five pressure–velocity (PISO) loops were needed per
time–step to ensure convergence. For the fluid flow itself to converge,
smaller number of PISO loops is sufficient, typically two for wave
related problems. Hence, the body motion–fluid flow coupling presents
a considerable overhead in terms of CPU time.

A modified approach for coupling the rigid body motion equations
and fluid flow is described, verified and validated in this paper.
Pressure field and body motion are tightly coupled at the body
boundary in large scale naval hydrodynamics problems. Pressure
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influences the body motion through the force acting on the body, while
the moving body influences the flow through the change of body
boundary velocity and relative grid motion fluxes (see Demirdžić and
Perić, 1988). Rigid grid motion is used, i.e. the grid is not deformed
when the body is moving. Enhancing the coupling between the pressure
equation and the body motion equations has been proposed before for
resolving the coupling of fluid flow and elastic bodies (Fernández et al.,
2005), however no similar approach is encountered for a special case of
rigid bodies that are modelled as boundaries of the fluid domain, where
no volume discretisation of the body is present.

In this work the convergence of the body motion–fluid flow
coupling is accelerated by further resolving the coupling via updated
6–DOF solutions after each pressure correction equation within the
PISO loop in addition to the standard motion update after each PISO
loop. The grid position is not updated between every pressure correc-
tion in order to save CPU time. This is allowed since relative flux caused
by the grid motion does not influence the pressure equation due to its
elliptic nature for incompressible flows. Furthermore, the influence of
the new grid position is considered negligible since the motions are
generally small within a time–step, even for large overall motions (e.g.
manoeuvres). We stress that the grid motion and relative fluxes are
updated after each PISO loop in a given time–step, correctly account-
ing for the complete 6–DOF–fluid flow coupling. Tighter coupling leads
to a smaller number of PISO iterations needed to ensure body motion–
fluid flow coupling convergence, which in turn reduces the overall CPU
time.

The benefit of the presented approach over the conventional
approach is the tighter coupling of the pressure equation and the 6–
DOF equations which dictate the motion of the body, which in turn
represents the boundary of the fluid domain. In the conventional
approach, the 6–DOF equations are solved once per PISO loop, i.e once
per pressure–velocity coupling. In the proposed approach, 6–DOF
equations are solved a significantly larger number of times: in addition
to the standard update in every pressure–velocity coupling loop, the 6–
DOF equations are additionally solved every time the pressure equation
is solved.

This paper is organised as follows. First, the numerical model of the
enhanced approach for fluid flow–6–DOF coupling is described,
comprising the governing equations, brief description of the numerical
procedure and a detailed procedure of the novel algorithm. Second, a
test case of a heaving cylinder is presented to verify and validate the
novel approach by comparing the results with experimental and
analytical results. Next, container ship seakeeping test cases are
presented to demonstrate the improvement of convergence of rigid
body motion–fluid flow coupling achieved with the new approach,
accompanied by a discussion of the results. Finally a brief conclusion is
given.

2. Numerical method

The enhanced 6–DOF–fluid flow coupling scheme is implemented
in foam–extend (Jasak, 2009), a community driven fork of OpenFOAM
open source software, which uses second–order accurate finite volume
spatial discretisation with arbitrary polyhedral grid support (Jasak and
Gosman, 2001). In this section a brief overview of the discretised
governing equations for incompressible two–phase flow is given. The
numerical procedure based on the PISO algorithm including the
solution of 6–DOF rigid body motion equations is shown. Finally, the
novel approach for coupling 6–DOF body motion equations with the
pressure equation is presented.

2.1. Fluid flow governing equations

In free surface hydrodynamic problems, the incompressible two–
phase flow is governed by the momentum equation, continuity
equation and the free surface transport equation. Two phases are

modelled with a single set of governing equations, where the disconti-
nuity in pressure gradient and density at the interface is resolved using
the Ghost Fluid Method (GFM) (Vukčević, 2016; Vukčević et al., 2017).
The GFM imposes pressure jump conditions at the free surface
ensuring a sharp transition of fluid properties. For incompressible
fluids the conservation of mass is governed by:

u∇ · = 0, (1)

where u represents a continuous velocity field in the global coordinate
system. For a moving computational grid the momentum equation
reads:

t
ν

ρ
pu u u u u∂

∂
+ ∇ · (( − ) ) − ∇ · ( ∇ ) = − 1 ∇ ,M e d (2)

where uM is the relative grid motion velocity which stems from the
Space Conservation Law (Demirdžić and Perić, 1988); νe is the effective
kinematic viscosity comprising appropriate phase viscosity and turbu-
lent eddy viscosity; ρ is the density field, and pd stands for dynamic
pressure: p p ρg x= − ·d . Note that due to the GFM, volumetric fluxes
are used for convection instead of mass fluxes (see Vukčević et al., 2017
for details). Algebraic Volume of Fluid (VOF) (Rusche, 2002) method is
used for interface capturing with additional convective term for inter-
face compression:

α
t

α α αu u∂
∂

+ ∇ · ( ) + ∇ · ( (1 − )) = 0,r (3)

where α is the volume fraction, and ur stands for artificial compressive
velocity field which is oriented in the normal direction towards the free
surface (Weller, 2008). The third term is active only near the free
surface due to the nonlinear term α α(1 − ). The details on the
evaluation of ur can be found in Rusche (2002).

Detailed discretisation of temporal derivative, convection and
diffusion in (2) in integral form can be found in Jasak (1996), while
already discretised equations are used in the text below. The semi–
discretised momentum equation for each cell reads:

∑a a
ρ

pu u b+ = − 1 ∇ ,P P
f

N N d
(4)

where aP stands for the diagonal coefficient, aN for the off–diagonal
coefficients, and subscripts P and N stand for values in the parent cell
centre and neighbouring cell centres, respectively. Parent cell is the cell
for which the equation is being solved for, and the neighbouring cells
are all the cells which share a face with the parent cell (Jasak and
Gosman, 2001). ∑f is the sum over all neighbouring faces f, and b
stands for the source term. Following notation proposed by Jasak
(1996), (4) can be written as:
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(5)

where H u( )N presents an explicit operator:

∑H au u b( ) = − + .N
F

N N
(6)

The pressure equation is derived by interpolating (5) on cell faces and
substituting into the discretised form of (1), yielding:
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where sf stands for surface normal vector, and subscripts f denote
values at face centres. For a detailed derivation of the pressure
equation with the GFM, the reader is referred to Vukčević et al. (2017).

2.2. Numerical procedure

The solution of above equations is achieved in a segregated manner
in a PIMPLE loop, a combination of SIMPLE and PISO algorithms,
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