
An hp-adaptive discontinuous Galerkin method for modelling snap loads in
mooring cables

Johannes Palm *, Claes Eskilsson 1, Lars Bergdahl

Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE–412 96, Gothenburg, Sweden

A R T I C L E I N F O

Keywords:
Mooring cable
Snap load
Discontinuous Galerkin method
High-order
Shock-capturing

A B S T R A C T

This paper focuses on modelling snap loads in mooring cables. Snap loads are a known problem for the established
oil and gas industry, and they pose a major challenge to robust mooring design for the growing industry of wave
energy conversion. We present a discontinuous Galerkin formulation using a local Lax-Friedrich Riemann solver
to capture snap loads in mooring cables with high accuracy. An hp�adaptive scheme is used to dynamically
change the mesh size h and the polynomial order p, based on the local solution quality. We implement an error
indicator and a shock identifier to capture shocks with slope-limited linear elements, while using high-order
Legendre polynomials for smooth solution regions. The results show exponential error convergence of order
p þ 1∕2 for smooth solutions. Efficient and accurate computations of idealised shock waves in both linear and
nonlinear materials were achieved using hp�adaptivity. Comparison with experimental data gives excellent re-
sults, including snap load propagation in a mooring chain. Application on a wave energy device using coupled
simulations highlights the importance of the touch-down region in catenary moorings. We conclude that the
formulation is able to handle snap loads with good accuracy, with implications for both maximum peak load and
fatigue load estimates of mooring cables.

1. Introduction

Snap loads are an important factor in the structural design of marine
cable installations. For example, they need to be considered during ma-
rine lifting operations (Bauduin et al., 2015) and they are known to cause
mooring line failure for floating oil production installations (Safetec,
2013). The snap phenomenon can result in high peak loads and increased
fatigue damage of cable installations. For the emerging field of wave
energy converters (WECs) that put larger demands on the mooring sys-
tem design and functionality (Johanning et al., 2007; Fitzgerald, 2009),
snap loads are potentially an even larger hazard to the design. Reports
show that snap loads can cause great damage in both experiments and
field tests of WECs (Hann et al., 2015; Thies et al., 2012; Harnois, 2014;
Savin et al., 2012). However, firm conclusions on snap load occurrence
and the resulting amplitude is difficult to reach from measurements only
(Harnois, 2014). It is therefore important that numerical methods used
for cable dynamics are able to handle snap loading events properly.

Snap loads are characterised by a discontinuity in tension magnitude
that propagates along the cable (Dhanak and Nikolaos, 2016). There are
three main mechanisms by which snap loads are generated in mooring

cables. First, there is the shock wave build up due to nonlinear material
response. Tjavaras (1996) studied these shock conditions in highly
extensible fibre ropes using the method of characteristics and finite dif-
ferences. He showed how shocks form in fibre ropes with exponential
strain-tension behaviour. A second snap load generation mechanism
arises from sea-bed contact, predominantly in catenary slack moorings.
Triantafyllou et al. (1985) has showed that a snap is generated when the
touch-down point velocity of a chain exceeds the wave-speed in the
transverse direction of the cable. This was later observed in experiments
by Ref. Gobat and Grosenbaugh (2001) and computed with good results
by Ref. Gobat (2000) using finite differences and adaptive time-stepping.
The third and most common snap load is however associated with the
cable slack condition. The snap load amplitude is in this case dependent
on thematerial stiffness and the local strain rate of the cable at the instant
it re-enters the tensioned regime (Hennessey et al., 2005). The experi-
ments of Fylling and Wold (1979) investigated snap loads of this type.
They have been numerically studied by several authors, e.g. Shin (1991)
using a clipping model that showed that the snap amplitude decreased
with increasing free-falling velocity of the cable. Also Vassalos and
Kourouklis (1998) used the lumped mass method as described in
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Ref. Huang (1994) to compare with said experiments. Good results were
obtained for cases with smooth dynamic response, but errors up to 30%
were noted for cases with snap loads. We note that in the case of cable
slack at the contact point, these definitions overlap and the governing
mechanism for the snap is a mixture of the second and third types of snap
load generation.

There are a multitude of numerical cable formulations and models; see
e.g. Ref. Spak et al. for a good review andBrownandMavrakos (1999) for a
comparative benchmark test between different methods. A common cable
discretisation technique is to use discrete lumped masses. This was origi-
nally described byRef.Walton and Polachek (1959), and is frequently used
today (Orcina Inc, 2012; ANSYS Inc, 2013). In early work, a number of
investigations were also made using finite differences (Tjavaras, 1996;
Gobat and Grosenbaugh, 2001; Ablow and Schechter, 1983; Mavrakos
et al., 1996). Linear finite element formulations include the work of Aamo
andFossen (2000), and commercial solvers such asDeepC (DNVGL,2014).
AGalerkinmethodbased on cubic splineswas introduced byRef. Buckham
et al. (2004) as a starting point to higher order modelling of the cables. Of
particular importance to this work is the paper of Montano et al. (2007)
who formulated a mixed high-order finite element model for cables. The
position and velocity of the cableweremodelledusing continuousGalerkin
finite elements of high order, but the tension was an auxiliary discontin-
uous Lagrangianmultiplier constraint. Under the assumption of negligible
bending stiffness, they showed good results for very stiff and inextensible
cables.However, topropagate snap loadsweneed to resolve the time-scales
of longitudinal waves of tension. This was the aim of our previous study,
where we developed a local discontinuous Galerkin (LDG) method for
mooring cables (Palm et al., 2013). The LDG formulation required stabili-
sation penalty terms as expected (Cockburn and Shu, 2001), but showed
good results in convergence and validation tests. However, a constant
choice of fluxes made snap load capturing difficult, showing a need for a
more sophisticated numerical scheme.

The governing equation of mooring cable dynamics is hyperbolic
(Tjavaras, 1996; Montano et al., 2007), and shock waves in hyperbolic
conservation laws is a well studied topic. The theorems of Lax and
Wendroff (1960), and of Hou and Le Floch state that any converging
solution of a shock in a hyperbolic equation will only converge to the
correct (and unique) solution if the problem is formulated in conservative
form. Discrete representations of shocks are also subject to Ref. Godunov
(1959) theorem stating that all constant flux schemes of orders greater
than one will produce non-physical extrema (over/undershoots) in the
presence of discontinuities. The total variation diminishing (TVD) family
of flux-limiters (see e.g. Ref. Sweby (1984)) have been developed to
remedy the accuracy for second order finite volume simulations.

Shocks can be modelled accurately using discontinuous Galerkin (DG)
methods in conservative form. The DG method is essentially a finite
volume scheme with each cell approximated using finite elements. The
elements are connected via numerical fluxes, like in the finite volume
method. Shape functions of arbitrary polynomial order can be used to
achieve exponential convergence for smooth solutions (Karniadakis and
Sherwin, 2003), enabling engineering accuracy with only a few elements.
However, in the presence of shocks, the estimated amplitude will be
affected by overshoots and undershoots around the shock front of the
solution (Toro, 2001). There are many approaches to capture shocks,
where the main is through limiting the flux (or slope) of the solution as in
finite volume schemes, see e.g. Ref. Sweby (1984). Among other tech-
niques we note the artificial viscosity for sub-cell shocks by Ref. Persson
and Peraire (2006) and the moment limiters for high order meshes
(Krivodonova, 2007). These measures have in several studies been
combined with mesh adaptivity in element density (h) and/or poly-
nomial order of the expansion basis (p) (Berger and Colella, 1989; Bey
et al., 1996; Eskilsson, 2011), as well as with shock detection schemes
(Bernard, 2008; Krivodonova et al., 2004).

We present a high-order discontinuous Galerkin (DG) method for
cable dynamics with the purpose of capturing and resolving snap loads.
The problem is formulated in conservative form, including an

approximative Riemann solver based on the local Lax-Friedrich flux.
Further, an hp�adaptive strategy based on the tension magnitude is
applied. The hp�adaptivity aims to utilise the desirable accuracy of high-
order elements in smooth regions, while returning to slope limited linear
elements around the discontinuities, to resolve the shocks. Computa-
tional results are compared with analytic results for three idealised test
cases. Further, we compare computational results with experimental data
from a mooring chain subjected to prescribed end-point motion.

The paper is organised as follows. First we present the governing
equations, recasted in conservative form, and the physical assumptions
made in the derivation (Section 2). This is followed by an eigenvalue
analysis of the model system (Section 3). Section 4 describes the details of
the numerical model implementation, with the hp�adaptive strategy pre-
sented in the following Section 5. Computational examples are then pre-
sented inSection6and thepaper endswithconcluding remarks inSection7.

2. Governing equations

For a cable of length Lc, we use the unstretched cable coordinate s 2
½0; Lc� to express the global coordinate position vector of the cable as
r ¼ ½r1ðsÞ; r2ðsÞ; r3ðsÞ�T. Under the assumption of negligible bending
stiffness, the equation of motion becomes

γ0€r ¼
∂

∂s
ðTt̂Þ þ f ; (1)

bt ¼ ∂r
∂s

����∂r
∂s

�����1

; (2)

where γ0 is the cable mass per unit length, T is the cable tension force
magnitude, bt is the tangential unit vector of the cable and f represents all
external forces. For notation we use _x ¼ ∂x

∂t to indicate time derivatives
and jxj ¼ ffiffiffiffiffiffiffiffi

xixi
p

to denote the L2 - norm of a vector quantity x, Vector
components are denoted by their index as xi; i 2 ½1;2;3�, and summation
over repeated indices is implied.

Written as a first order system in terms of the cable position r, its
spatial derivative q ¼ ∂r

∂s and its momentum density ν ¼ _rγ0, eq.
(1) becomes

_r ¼ ν

γ0
; (3)

_q ¼ ∂

∂s

�
ν

γ0

�
; (4)

_ν ¼ ∂

∂s
ðTbtÞ þ f ; (5)

where we have assumed that the cable mass is constant in time. In terms
of a state vector u ¼ ½r; q; ν�T the conservative form of the problem is
written as

_u ¼ ∂FðuÞ
∂s

þ QðuÞ ; (6)

with a flux function

FðuÞ ¼
�
Ø;

ν

γ0
; Tbt�T ; (7)

and a non-linear source term

QðuÞ ¼
�
ν

γ0
;Ø; f

�T
: (8)
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