Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/oceaneng

CrossMark

An integrated empirical manoeuvring model for inland vessels

^a Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

^b National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, 430063 Wuhan, Hubei, China

^c Maritime Research Institute Netherlands (MARIN), Haagsteeg 2, 6700 AA Wageningen, The Netherlands

^d Wuhan Rules and Research Institute, China Classification Society, 430022 Wuhan, Hubei, China

ARTICLE INFO

Keywords: Inland vessel manoeuvrability Twin-propeller twin-rudder systems Rudder forces and moments Manoeuvrability prediction Manoeuvring simulations

ABSTRACT

Ship manoeuvrability is important for navigation safety. However, few studies have been specifically carried out for inland vessels. Since most of the empirical methods were generated based on databases of seagoing ships, the usability of these methods for inland vessels is doubtful. The objective of the present work is to assess the existing manoeuvrability models and find the most suitable ones for inland vessels. Furthermore, these models are integrated into a single new model that can predict the manoeuvring behaviour of benchmark inland vessels without extensive experimental tests. The method aims at inland ships of typical dimensions in the Yangtze River (inland ships on European waterways have different dimensions), which is characterised by a large water depth. After preselecting the most promising methods through reviewing literature, a selection of the empirical methods for hull forces and moments is performed by comparing simulation results to model-scale free-running experiments of various turning and zigzag manoeuvres. Considering the large variety of rudder configurations for inland vessels, this paper describes a procedure of using 2D open-water RANS results to calculate the rudder forces and moments. Accordingly, hydrodynamic coefficients of benchmark rudder profiles are provided to apply the proposed procedure for different rudder configurations.

1. Introduction

An inland vessel, in this paper, is a self-propelled motor ship that sails in inland waterways, such as rivers, canals, and lakes. The design and navigation environment of inland vessels are different from those of seagoing ships. The impacts of these differences should be carefully considered when prediction methods that are based on or intended for seagoing ships are used for inland vessels (Liu et al., 2015). Unlike seagoing ships that commonly equip a single propeller and a single rudder (SPSR), inland vessels commonly feature multiple propellers and multiple rudders (MPMR). Typical MPMR configurations of inland vessels are single-propeller twin-rudder (SPTR), twin-propeller twinrudder (TPTR), and twin-propeller quadruple-rudder (TPQR). This paper focuses on manoeuvring modelling of the TPTR system for inland vessels as it is widely used on both the Rhine and the Yangtze River.

Normally, TPTR ships have better course keeping and course changing abilities but worse turning abilities than SPSR ships (Kim et al., 2007). Yoshimura and Sakurai (1989) showed that a wide-beam TPTR ship may have an improved turning ability in shallow water instead of a customarily worsened one for conventional SPSR ships. In

general, the TPTR system is preferred in shallow water due to the possibility to have restricted draught. To analyse the manoeuvrability of TPTR inland vessels, the mathematical model needs to consider the particulars of the inland vessels and the twin-rudder configurations. The objective of the present work is to formulate an integrated model, which is based on available knowledge and easy to use at the initial design stage without requiring extensive model tests.

Besides studies on the mathematical modelling of MPMR ships (Yoshimura and Sakurai, 1989; Lee and Fujino, 2003; Hasegawa et al., 2006; Khanfir et al., 2008; Di Mascio et al., 2011), several attempts have been made to model the interaction between the hull and the rudder (Khanfir et al., 2011), the interaction between the propeller and the rudder (Nakatake et al., 1989), and the flow straightening effect of the hull and the propeller on the rudder (Molland and Turnock, 2002). Additionally, a number of studies have been published on the asymmetric manoeuvring behaviour of MPMR ships (Kang et al., 2011; Coraddu et al., 2013; Dubbioso et al., 2015). However, the above-mentioned studies were carried out for seagoing ships, very few manoeuvrability studies have been performed for inland vessels. This paper presents studies based on two standard TPTR inland vessels in the Yangtze River. One is a 6700 t TPTR bulk carrier, and the other one is a 3500 t TPTR tanker.

E mail address. Jardinia@mail.edu.en (0. Eld).

http://dx.doi.org/10.1016/j.oceaneng.2017.04.008

Received 13 September 2016; Received in revised form 30 December 2016; Accepted 4 April 2017 Available online 12 April 2017 0029-8018/ © 2017 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. E-mail address: jialunliu@whut.edu.cn (J. Liu).

Ocean	Enaine	erina	137	(2017)	287-	308
occurr	Lighte	crug	10/	(=01)	-0/	000

Nomeno	clature	F_R	Rudder resultant force (N)
		F_T	Rudder tangential force (N)
Abbrevia	tions	F_X	Longitudinal component of rudder induced forces (N)
			Lateral component of rudder induced forces (N)
COG	Centre of gravity	I,	Moment of inertial (km ²)
MPMR	Multiple-propeller multiple-rudder	J_{π}	Added moment of inertial (km ²)
SPSR	Single-propeller single-rudder	k .	Impact factor of the rudder aspect ratio on the rudder
RANS	Revnolds-Averaged Navier-Stokes	мД	hydrodynamics (-)
TPTR	Twin-propeller twin-rudder	Krr	Propeller thrust coefficient (_)
mm	Twin properer twin rudder	I	Shin length between perpendiculars (m)
Greek su	mbols	I	Ship length over all (m)
Greek by		10a m	Ship mass (lrg)
a	Angle of attack (rad)	m	Added mass due to motion in r-direction (kg)
ß	Shin drift angle (rad)	m	Added mass due to motion in a direction (kg)
р R	Drift angle at propellor position (red)	my N	Tetal hydrodynamia moment acting on midshin around
ρ_P	Difficulture deviation of the noremeter (%)	11	the a cris (Nrm)
Δ s	Relative deviation of the parameter (%)		life z-axis (Nii)
0	Kudder angle (rad)	n	Propeller revolution rate (s ⁻)
0 _h	Hydrodynamic inflow angle of the rudder (rad)	N_H	Hydrodynamic moment due to hull acting on the ship
0	Rudder turning rate (°s ⁻)		around z-axis (Nm)
η_R	Ratio of propeller diameter to rudder span, $\eta_R = D_P/B_R$ (-)	N_P	Hydrodynamic moment due to propeller acting on the
ϵ_R	Ratio of the wake fraction of the propeller to the wake		ship around z-axis (Nm)
	fraction of the rudder (–)	N_R	Hydrodynamic moment due to rudder acting on the ship
k_P	Impact factor of the propeller slipstream on the rudder		around z-axis (Nm)
	hydrodynamics (–)	n_T	Number of performed turning manoeuvres (-)
k_R	Impact factor of the end plates on the rudder hydrody-	n_Z	Number of performed zigzag manoeuvres (-)
	namics (–)	ŕ	Yaw acceleration around midship (rads ⁻²)
γ_R	Flow straightening coefficient of the rudder (–)	r	Yaw rate around midship (rads ⁻¹)
κ _R	Experimental constant for expressing $u_R(-)$	r_C	Yaw rate in steady turn (rads ⁻¹)
λ	Model scale (–)	S	Wetted surface (m)
Λ_G	Rudder geometric aspect ratio (-)	Т	Ship draught (m)
Λ_E	Rudder effective aspect ratio (–)	T_P	Propeller thrust (N)
∇	Ship displacement volume (m^3)	t_P	Propeller thrust deduction (–)
w	Ship heading angle (rad)	t _R	Steering resistance deduction factor (-)
woi	First overshoot angle (deg)	tor	Time to the first overshoot angle (s)
Wor	Second overshoot angle (deg)	toz	Time to the second overshoot angle (s)
φ02 0	Water density (kgm ⁻³)	ů.	Ship acceleration in x-direction (ms^{-2})
ρ σπ	Average absolute deviation of the turning criteria (%)	u	Forward speed in x-direction, $\mu = V \cos\beta$ (ms ⁻¹)
01 Πα	Average absolute deviation of the zigzag criteria (%)	11 12	Longitudinal velocity of the inflow to rudder (ms^{-1})
υZ	Therage absolute deviation of the highlag effectia (70)	ŵ V	Ship acceleration in <i>u</i> -direction (ms ⁻²)
Roman s	umbols	, V	Ship velocity on midship $V = \sqrt{y^2 + y^2}$ (ms ⁻¹)
Roman 3	gnoots	<i>V</i>	Simp velocity on industrip, $v = \sqrt{u} + v$ (ins.) Swew speed in u direction on midship $u = -V \sin \theta (ms^{-1})$
4 -	Advance in the turning manoeuvre (m)	U	Sway speed in <i>g</i> -direction on influence, $v = -v \sin p$ (ins.) Dreneller educates gread (me^{-1})
11D 1/	Non-dimensional advance in the turning manoeuvre	V_A	Propener advance speed (ms)
л _D	A' = A/I	V_C	Speed in steady turn (ms) P_{res} data in f_{res} and res (m r^{-1})
	$A_{D} = A_{D}/L (-)$	V_R	Rudder inflow velocity (ms $^{-1}$)
a_H	Rudder force increase factor (–)	v_R	Lateral velocity of the inflow to rudder (ms $\frac{1}{2}$)
A_R	Rudder lateral area without the horn part (m^{-})	V_{S}	Service speed (ms ⁻¹)
A_{RP}	Rudder lateral area in the propeller slipstream (m ²)	w_P	Wake factor at propeller position in manoeuvring (–)
T_D	Tactical diameter of turning circle test (m)	w_R	Wake factor at rudder position in manoeuvring (–)
T'_D	Non-dimensional tactical diameter of turning circle test,	W_{P_0}	Wake factor at propeller position in straight moving (–)
	$T'_D = T_D / L \ (-)$	X	Total hydrodynamic force acting on midship in the x-
В	Ship width at the water level (m)		direction (N)
B_R	Rudder span (m)	x_G	Longitudinal position of centre of gravity in $o - xyz$ (m)
C_b	Block coefficient (–)	X_H	Hydrodynamic force due to hull acting on midship in x-
C_D	Drag coefficient (–)		direction (N)
C_L	Lift coefficient (–)	ХH	Longitudinal position of acting point of additional lateral
C_R	Rudder chord length (m)		force (m)
C_{D_0}	Drag coefficient at zero angle of attack (–)	$X_{\mu}(\beta, r')$	Longitudinal hull force due to manoeuvring motions
C_{-}	Lift coefficient at zero angle of attack (-)	,.)	expressed by β and r' on midship in <i>r</i> -direction (N)
\mathcal{D}_{L_0}	Descallen dismeter (m)	$X_{II}(u)$	Longitudinal hull force due to straight moving on midshin
D_P	Propener diameter (m)	TH(u)	in x-direction (N)
F _D	Rudder drag force (N)	$X_{r}(v' r')$	Longitudinal hull force due to manoauvring motions
F _L	Rudder lift force (N)	$M_{H(v, r)}$	events and r' on midship in r' direction (N)
F_N	Kudder normal force (N)	Y.	Hydrodynamic force due to propeller acting on midshin in
		ΛP	invarousinamic force due to propener acting on influsing in

288

Download English Version:

https://daneshyari.com/en/article/5474254

Download Persian Version:

https://daneshyari.com/article/5474254

Daneshyari.com