Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

National Renewable Energy Laboratory, MS 3811, 15013 Denver West Parkway, Golden, CO 80401, USA

ARTICLE INFO

ABSTRACT

Keywords: Oscillating surge wave energy converter Variable structures Load shedding Convex optimization Psuedo-spectral control The aim of this paper is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydro-dynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solve the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.

1. Introduction

The success of future wave energy converter (WEC) technologies will require the development of advanced control methods and/or structures that adapt device performance to maximize energy generation in operational conditions while shedding hydrodynamic loads in extreme sea states to reduce the structural mass and overall cost (Musial et al., 2013). In an attempt to address some of these issues, researchers at the National Renewable Energy Laboratory have been developing a novel WEC concept that combines an oscillating surge wave energy converter (OSWEC) with variable geometry (Tom et al., 2016a, 2016b). The design of active control surfaces is expected to assist in tuning the hydrodynamic properties of the device to maximize power absorption in moderate wave climates while shedding loads in larger seas to increase the operational range. The concept of controllable airfoils applied to wave energy conversion has recently been pursued in Atargis Energy Corporation's cycloidal device (Siegel et al., 2011). The idea for large-scale geometric changes has been considered in the design of Weptos (Pecher et al., 2012), though the focus has been on its survival mode. The WEC concept used in this paper is more similar to a pitching device with a rotatable flap (Kurniawan and Moan, 2012); however, increasing the number of adjustable surfaces allows for greater refinement in the hydrodynamic properties. The development of nearshore OSWECs in recent years has been led by Aquamarine Power's Oyster (Whittaker and Folley, 2012), AW-Energy Oy's Waveroller (Lucas et al., 2012), and Resolute Marine Energy's Surge WEC (Ramudu, 2011). In addition, Langlee Wave Power (Pecher et al., 2010) and PolyGen Ltd are currently developing floating, multiflap OSWECs for deepwater deployment. However, these designs consist of a fixed geometrical body which generally do not operate as a resonant device (Gomes et al., 2015) and instead rely on control of the power-take-off (PTO) system to further optimize power capture.

The control of ocean energy harvesting devices has garnered significant attention in the marine engineering community and is considered necessary for an open-ocean deployment to be successful and economical. Samples of the types of control methodologies that have previously been investigated are complex conjugate (Falnes, 2002), latching (Babarit and Clément, 2006), declutching (Babarit et al., 2009), and inertial tuning (Kurniawan and Moan, 2012 and Flocard and Finnigan, 2012). Applying state-constrained optimization (Eidsmoen, 1996; Hals et al., 2011) to WEC control has gained significant traction in recent times as it provides the ability to include nonlinear constraints. This optimization has been pursued using

* Corresponding author. *E-mail addresses*: Nathan.Tom@nrel.gov (N.M. Tom), Yi-Hsiang.Yu@nrel.gov (Y.H. Yu), Alan.Wright@nrel.gov (A.D. Wright), Michael.Lawson@nrel.gov (M.J. Lawson).

http://dx.doi.org/10.1016/j.oceaneng.2017.03.027

0029-8018/ © 2017 Elsevier Ltd. All rights reserved.

CrossMark

Received 26 January 2016; Received in revised form 30 November 2016; Accepted 13 March 2017

Nomenclature <i>P</i> Time-varving instantaneous power			Time-varying instantaneous power
		P_{w}	Wave time-averaged power per-unit width
Symbol	Description	V_{g}	Wave group velocity
φ	Flap pitch angle	C_w	Nondimensional capture width: traditional capture width
ρ_m	Structural mass density		divided by OSWEC width
h	Water depth	C_R	Nondimensional capture width for reactive power
Η	OSWEC height	H(x)	Heaviside step function
t	OSWEC thickness	δ	Ratio between the constrained-to-optimal pitch angular
w	OSWEC width		velocity
w_f	Flap width	PA_{\pm}	Positive and negative peak-to-average power ratio
A	OSWEC displaced volume	X_{r1}	Complex surge reaction force per wave amplitude
t_f	Flap minor axis	X_{r3}	Complex heave reaction force per wave amplitude
H_f	Flap major axis	μ_{15}	Frequency-dependent surge-pitch radiation added mass
w_s	Side support width	λ_{15}	Frequency-dependent surge-pitch radiation wave damp-
I ₅₅ ÿ	Pitch mass moment of inertia	c	ing Static harmonic form
ζ ₅	Pitch angular acceleration	Jm	Static neave reaction force
t -	Time Bitch means qualities to such	Jr1 V	Sume warying surge reaction force
1 _{e5}	Mayo rediction torque because of nitch motion	K_{e1}	Surge wave-excitation force kernel
ι _{r55}	Wave radiation torque because of pitch motion	κ _{r15}	Complex emplitude of the PTO terrors to eliminate the
τ_h	Machanical torque applied by the power take off device	u_m	complex amplitude of the FTO torque to eminiate the
1 _m	Mass density of the working fluid	F	Absorbed operation
ρ	WEC displaced volume in calm water		Number of terms in the Fourier series
v r,	Radial distance from the origin to the center of buoyancy	$c^{c} c^{s}$	Pitch angular displacement cosine and sine Fourier coeffi-
т <u>Б</u>	Mass of the wave energy converter	ۍ, د	cients
r_	Radial distance from the origin to the center of gravity	ĉ	Vector of pitch angular displacement Fourier coefficients
a	Gravitational acceleration	\overline{w}^{c} , w^{s}	Pitch angular velocity cosine and sine Fourier coefficients
ζ5	Time-varving pitch angular displacement	τ,τ ŵ	Vector of pitch angular velocity Fourier coefficients
C_{55}	Pitch hydrostatic restoring coefficient	τ^c, τ^s	Power-take-off torque cosine and sine Fourier coefficients
μ ₅₅	Pitch added moment of inertia	τ	Vector of power-take-off torque Fourier coefficients
σ	Wave Angular Frequency	σ_0	Fundamental angular frequency
K_{r55}	Pitch radiation impulse response function	δ_{ii}	Kronecker delta
ζ ₅	Time-varying pitch angular velocity	θ	Cosine and sine time Fourier modes
λ_{55}	Pitch wave radiation damping	$\Phi(t)$	Vector of time Fourier terms that form the orthogonal
K_{e5}	Pitch wave-excitation torque kernel		basis
η	Time-varying incident wave elevation	Г	Time-derivative matrix
X_1	Frequency-dependent complex surge wave-exciting force	G_{55}	Pitch wave-radiation convolution integral matrix
	coefficient	\hat{e}_5	Pitch wave-exciting torque Fourier coefficients
ϕ_1	Frequency-dependent phase of the surge wave-exciting	M_{55}	Pitch equation of motion matrix
	force coefficient	f_{r1}	Surge-foundation force Fourier coefficients
X_3	Frequency-dependent complex heave wave-exciting force	\hat{e}_1	Surge wave-exciting force Fourier coefficients
	coefficient	G_{15}	Surge-pitch wave-radiation convolution integral matrix
ϕ_3	Frequency-dependent phase of the heave wave-exciting	γ	Surge-foundation force penalty weight
	force coefficient	P_{abs}	Time-averaged absorbed power
X_5	Frequency-dependent complex pitch wave-exciting torque	C_r	katio of power from optimal control to maximum absorp-
1	coefficient	F	under motion constraints P_{0} and P_{1} from ontimel control to maximum neuron
ϕ_5	Frequency-dependent phase of the pitch wave-exciting	r_r	Ratio of $ \lambda_{rl} $ from optimal control to maximum power absorption under motion constraints
œ	Deel component	I II	Penalty weight lower and upper bound
л ч	Imaginary component	L_B, U_B E	Cumulative absorbed energy assuming a nondimensional
5	Insident wave potential	L_w	capture width of 1
φ_I	Wave amplitude	Subscri	pt Description
A k	Wave number	n	Passive absorption from setting $C_{\rm a} = 0$ and selecting
λ	Wave length	P	$B_{\rho} \ge 0$ that maximizes power
υ ξ.	Complex amplitude of the pitch angular displacement	mc	Active absorption from selecting C_q and $B_p \ge 0$ that
C_{a}	Power-take-off linear spring coefficient		maximizes power under motion constraints
B_{q}	Power-take-off linear damping coefficient	z	Pitch motion and PTO torque profiles required to elim-
P_T	Time-averaged absorbed power		inate the surge-foundation force
T	Wave period	n	Natural (unforced) pitch motion when setting $C_g = B_g = 0$
P_R	Time-averaged reactive power		

calculus of variations (Eidsmoen, 1996), model predictive control (Cretel et al., 2011; Abraham and Kerrigan, 2013; Li and Belmont, 2014), and pseudo-spectral methods (Bacelli and Ringwood, 2011 and Herber and Allison, 2013). However, these control strategies focus

primarily on maximizing the time-averaged absorbed power without weighing considerations on the corresponding peak forces, torques, and fatigue damage accumulation (Zurkinden et al., 2013). It can be expected that as the controller works to maximize the absorbed Download English Version:

https://daneshyari.com/en/article/5474258

Download Persian Version:

https://daneshyari.com/article/5474258

Daneshyari.com