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A B S T R A C T

In this work, we provide a tracking controller formulation for dynamically positioned surface vessels with an
asymmetric added mass terms that affects the overall system dynamics at the acceleration level. Specifically a
novel continuous robust controller is proposed for surface vessels that in addition to unstructured uncertainties
in its dynamics, contains added mass effects in its inertia matrix. The proposed controller compensates the
overall system uncertainties while ensuring asymptotic tracking by utilizing the knowledge of the leading
principal minors of the input gain matrix. Stability of the closed–loop system and asymptotic convergence are
proven via Lyapunov based approaches. Simulation studies are also presented to illustrate the viability of the
proposed method.

1. Introduction and system model

The mathematical model for a dynamically positioned fully actuated
3 degree of freedom (dof) surface vessel is commonly represented by
Fossen (2011,1994,2002), Skjetne et al. (2004), Ihle et al. (2006).

M v C v D v τ˙ + + =s s s (1)

x Rv˙ = (2)

where x t x y ψ( ) ≜ [ , , ] ∈p p
T 3 is the position vector that contains

translational positions x t( )p , y t( ) ∈p in X– and Y– directions,
respectively, and the yaw angle of the ship ψ t( ) ∈ ,

v t u v ψ( ) = [ , , ˙ ] ∈T 3 is the body–fixed linear and angular velocity
vector. Also in (1), M ψ( )s , C v v( , )s r , D v v( , ) ∈s r

3×3 represent inertia
matrix, centripetal and Coriolis forces, hydrodynamic damping terms,
respectively, v t( ) ∈r

3 is the relative velocity between the fluids and
the vessel, and the control input vector is represented by τ t( ) ∈ 3. In
(2), R ψ SO( ) ∈ (3) is the rotation matrix that has the form
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While the mathematical model in (1) and (2) are utilized in almost
all past work, as detailed in Fossen (1994,2002), Skjetne et al. (2004),
and Fossen and Strand (1999), during the cruise, the motion of the
surface vessel effects all the flow, resulting in vibrations with different

amplitudes to occur on various parts of the flow. It is important to note
that motion in one direction cause forces not only in the same direction
but also in other directions (Newman, 1977; Lewis, 1989). This
situation results as pressure effects and moments acting on different
parts of the surface vessels and submarines which causes additional
force and thus has an influence on the acceleration of surface vessels
and submarines. For precise control design, this effect, referred as the
added mass, is required to be represented in the dynamic model. There
are different conventions (Skjetne et al., 2004; Fossen and Strand,
1999; Kim et al., 2007) on how to represent the added mass effects in
the dynamic model. To name a few: In Fossen and Strand (1999), after
using inertial velocity as the velocity state, the added mass effects are
represented inside the system's inertia matrix. Following the conven-
tion given in Fossen and Strand (1999), in this work, the added mass
terms are considered to be affecting the system dynamics at the
acceleration level (i.e., inertial velocity is chosen as the velocity state).
As a result, the inertia matrix of the surface vessel in (1) is obtained as
(Fossen, 1994)

M M M= +s RB A (4)

where M ψ( ) ∈RB
3×3 represents the positive definite, symmetric rigid

body inertia matrix and M ψ( ) ∈A
3×3 represents the added mass

inertia matrix. The entries of added mass inertia matrix represented
by MAij denote the mass associated with a force on the body in the ith
direction due to a unit acceleration in the jth direction (Techet, 2015).
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For a detailed representation of the mathematical model reader can
refer to Lee et al. (2008).

As noted in Fossen (1994) the inertia matrix due to added mass is
not necessarily symmetric. After summed with the symmetric M ψ( )RB ,
the overall inertia matrix M ψ( )s of the system loses its symmetry. The
asymmetric terms in the inertia matrix, when not appropriately dealt
with, may result in degradation of the controller performance, and even
instability (Lee et al., 2008, 2008). Therefore the main challenge of
added mass effects are due to its asymmetric nature. From a control
design perspective, the symmetric nature of the inertia matrix is
extremely useful especially when constructing quadratic terms in the
Lyapunov candidate function.

To our best knowledge, there are only a few control design works
that considered asymmetric added mass in the inertia matrix. In Do
and Pan (2005), Do and Pan considered the case where the symmetry
of the inertia matrix was removed for underactuated surface vehicles.
Robust and adaptive type controllers were proposed for the fully
actuated surface vehicles in Lee et al. (2008) and Lee et al. (2008),
respectively. The aforementioned controllers were designed based on
Lyapunov–type analysis methods, and were able to achieve only the
ultimate boundedness of the tracking error signals.

In this work, a surface vessel having asymmetric inertia matrix is
considered and output tracking control is aimed. The asymmetry of the
inertia matrix is to be dealt with a matrix decomposition which while
proposing a solution to the asymmetric inertia matrix by introducing a
symmetric inertia–like matrix causes the control input to be pre–
multiplied first with an uncertain unity upper triangular matrix and
then with a known diagonal matrix. This is then addressed via the
control design and accompanying stability analysis where first bound-
edness of all the closed–loop signals are demonstrated. Then via the
use of two lemmas semi–global asymptotic stability of the tracking
error is proven. Numerical simulations are then performed to demon-
strate the viability of the proposed robust control strategy.

2. Open–loop error system development

In an attempt to obtain a compact representation of the mathema-
tical model of the surface vessel in (1) and (2), the time derivative of (2)
is taken

x Rv Rv¨ = ˙ + ˙ (5)

which includes the time derivative of the rotation matrix that can be
obtained as

R RS˙ = 3 (6)

with S ψ( ˙ ) ∈3
3×3 being a skew–symmetric matrix defined as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥S ψ≜ ˙

0 − 1 0
1 0 0
0 0 0

.3
(7)

After substituting (1) and (6) into (5), it is easy to obtain

x RM τ R M C D S v¨ = − [ ( + ) − ] .s s s s
−1 −1

3 (8)

In order to ease the presentation of the subsequent development, the
right–hand side of (8) can be rewritten as

x h Gτ¨ = + (9)

where h x x( , ˙) ∈ 3 and G x x( , ˙) ∈ 3×3 are defined as

h R M C D S v≜ − [ ( + ) − ]s s s
−1

3 (10)

G RM≜ .s
−1 (11)

It is assumed that G x x( , ˙) being a real matrix with non–zero leading
principle minors by utilizing the assumption that M ψ( )s has full rank.
This allows the utilization of the matrix decomposition in Costa et al.
(2003), Morse (1993) to yield

G SDU= (12)

where S x x( , ˙), D and U x x( , ˙) ∈ 3×3 denote a symmetric positive
definite matrix, a diagonal matrix with entries being ± 1, and a unity
upper triangular matrix, respectively. When the above matrix decom-
position is applied to the simulation model taken from Skjetne et al.
(2004), D came out to be an identity matrix. Despite this, the
derivations will be made for the general case where D is assumed to
be available for the control design (see Chen et al., 2008 for a similar
type of assumption).

From (9), via utilizing the assumption that the leading principal
minors of G are non–zero, it is easy to obtain

τ G x h= (¨ − ).−1 (13)

After taking the time derivative of (9), substituting (12) and (13), and
then performing straightforward mathematical manipulations yield

x φ SDUτ= + ˙
…

(14)

where φ x x x( , ˙, ¨) ∈ 3 is an auxiliary vector that is defined as

φ h GG x h≜ ˙ + ˙ ( ¨ − ).−1 (15)

At this point, M x x( , ˙) ∈ 3×3 is defined as the inverse of S x x( , ˙).
Since S x x( , ˙) obtained from the matrix decomposition is symmetric and
positive definite, so is M x x( , ˙). Furthermore, M x x( , ˙) satisfies the
following inequalities

m χ χ M x x χ m x x χ χ≤ ( , ˙) ≤ ( , ˙) ∀ ∈T2 2 3×1 (16)

where m ∈ and m x x( , ˙) ∈ represent a positive bounding constant
and a positive non–decreasing function, respectively.

Pre–multiplying both sides of (14) with M x x( , ˙) yields

Mx f DUτ= + ˙
…

(17)

where f x x x Mφ( , ˙, ¨) ≜ ∈ 3.
Ensuring that the translational positions and the yaw angle would

track a given reference trajectory while, at the same time, ensuring the
boundedness of all the signals under the closed–loop operation
consists of our main control objectives. The control design is based
on availability of x t( ) and x t˙ ( ) (i.e., full–state feedback).

In order to quantify the tracking control objective, the output
tracking error, e t( ) ∈1

3, is defined as the difference between the
reference trajectory and the position of the surface vessel as

e x x≜ −d1 (18)

where x t( ) ∈d
3 is the reference trajectory chosen smooth enough in

the sense that

x t x t i( ) ∈ and ( ) ∈ , = 0, 1, 2, 3.d d
i3 ( )

∞ (19)

In order to eliminate the higher order terms from our stability
analysis (i.e., only first order time derivatives to appear in the time
derivative of the Lyapunov function), an auxiliary error signal, denoted
by e t( ) ∈2

3, and a filtered error term, denoted by r t( ) ∈ 3, are
defined as follows

e e e≜ ˙ +2 1 1 (20)

r e αe≜ ˙ +2 2 (21)

where α ∈ 3×3 is a positive definite, diagonal, constant gain matrix.
After premultiplying the time derivative of (21) with M, the following
expression can be obtained

Mr M x e αe f DUτ˙ = ( + + ˙ )− − ˙d
… ‥

1 2 (22)

where (17), (18) and (20) were utilized. To obtain a compact form for
the right–hand side of (22), we define an auxiliary function

N x x x x x x x t( , ˙, ¨, , ˙ , ¨ , , ) ∈d d d d
… 3 as follows

N M x e αe f e Mr≜ ( + + ˙ )− + + 1
2

˙ .d
… ‥

1 2 2 (23)
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