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A B S T R A C T

Based on the potential flow theory, taking the dispersive effect into account, a shallow-water wave equation
which satisfies Laplace equation, free surface and seabed boundary conditions is established. According to the
slender ship assumption and the continuous matched condition on the interface of inner and outer regions, the
mathematical problems of sub-supercritical mixed flow are analytically solved by using the Fourier integral
transform method, meanwhile, the analytical models of sub-supercritical ship hydrodynamic pressure field
(SHPF) in dredged channel are derived, and those of open water, rectangular canal and stepped canal can also
be obtained by further simplifying or adopting similar method. The distribution characteristics of sub-
supercritical SHPF in dredged channel are acquired, and the effects of transverse distance, inner or outer water
depth, width, and depth Froude number on SHPF are analyzed. The SHPF analytical models with the dispersive
effect are verified by comparing with the corresponding experimental results.

1. Introduction

The characteristic of ship wave in shallow water is closely related to
the depth Froude number F V gh= /h , hereV is the ship speed, h is the
water depth, g is the gravitational acceleration, F < 1h and F > 1h are
called as the subcritical and supercritical speed respectively. If a ship
moves in shallow water with constant depth, the flow may only exist
one depth Froude number, however, if a ship moves in shallow water
with different depth, the flow may exist several depth Froude numbers.
For a dredged channel, which is depicted in Fig. 1, its flow exists two
depth Froude numbers, if the low depth Froude number is subcritical
and the high one is supercritical, the flow can be called as the sub-
supercritical mixed flow; if the low depth Froude number is super-
critical and the high one is also supercritical, the flow can be called as
the super-supercritical mixed flow, and so on.

The researches on shallow-water wave problem have practical
significance in shipbuilding, ocean, coastal and hydraulic engineering.
The mutual effects among ship wave, sidewall and seabed in restricted
waterways may cause the sinkage and trim of ship, and affect ship
resistance and its safe navigation, which may also lead oceanic and
coastal structure to damage (Tuck, 1967; Chen and Sharma, 1995;
Gourlay, 2000). Based on Michell shallow-water wave equation, the
hydrodynamic forces of a slender ship moving at subcritical or super-
critical speed in open water were studied (Tuck, 1966; Gourlay, 2008).
Then, without considering the dispersive and nonlinear effects, Tuck

(1967) further extended his researches to the finite-width channel, he
calculated the ship sinkage of various width, and indicated that the
effect of finite width was far more serious for sinkage than it was for
trim. Gourlay (2008) and Zhang et al. (2015) further extended the
methods of Tuck (1966) and Beck et al. (1975) to rectangular canal,
dredged channel and stepped canal; Gourlay (2008) solved the sub-
subcritical ship hydrodynamic problems, and Zhang et al. (2015)
established the analytical models of SHPF at sub-subcritical, sub-
supercritical and super-supercritical speeds. However, the above
calculated results may be reasonable for the depth Froude number
far from 1, because of the ignorance of dispersive and nonlinear effects
in Michell equation. With considering the dispersive effect, the hydro-
dynamic problems caused by a slender ship moving at subcritical or
supercritical speed in open water were solved (Mei, 1976; Gourlay and
Tuck, 2001). Furthermore, the KP and Boussinesq equations with
dispersive, nonlinear and unsteady effects had been used to calculate
the solitary wave and hydrodynamic force caused by ship moving at
transcritical speed in rectangular canal (Chen and Sharma, 1995, 1997;
Jiang, 2001).

Variation of pressure caused by a moving ship is generally called as
ship hydrodynamic pressure field (SHPF), and the pressure character-
istics can be used for military purposes of discovering or identifying
ship. At present, most researches on SHPF mainly aim at the constant
depth or open water, and rarely concern the non-uniform depth, mixed
flow and so on (Sahin and Hyman, 2001; Zhang et al., 2002; Lazauskas,
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2007; Deng et al., 2014a, 2014b). Based on the above-mentioned
research works (Mei, 1976; Beck et al., 1975; Gourlay, 2008; Zhang
et al., 2015), we derive the new analytical models of sub-supercritical
SHPF with the dispersive effect in dredged channel，and extend the
pressure calculation of ship hull surface to that of the whole flow field,
the sub-subcritical mixed flow to the sub-supercritical one in inner and
outer regions. The distribution characteristics of sub-supercritical
SHPF in dredged channel can be obtained by calculation and analysis,
and the calculated results have been compared with the typical
experimental ones. Meanwhile, the SHPF analytical models with the
dispersive effect in open water, rectangular canal or stepped canal can
also be derived by further simplifying or adopting similar method.

2. Governing equations

As is depicted in Fig. 1, we consider that a ship moves along the
centerline in a dredged channel, with supposing the ship speed is V, its
length is L (or 2l), and its width is 2b. The dredged channel can be
divided into the inner and outer regions, the depth of inner region is h,
its depth Froude number is Fh, its width is w2 1, and the depth of outer
region is H, its depth Froude number is FH , because of h H> , then
F F<h H . For F V gh= / < 1h and F V gH= / > 1H , it can be called as
the sub-supercritical mixed flow in dredged channel. A Cartesian
coordinate system oxyz is employed and moves with ship, the origin
o locates at the center of hull waterline, with the axis z vertically
upward, and the axis x in the direction of ship motion. We consider
only the region y ≥ 0, because of the flow symmetry about y = 0.

Supposing the fluid is inviscid, incompressible and irrotational,
meanwhile, ignoring the unsteady effect, a steady wave equation can be
derived (Jiang, 2001; Zhang and Gu, 2006), i.e.,
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where φ is the local-depth-averaged perturbation velocity potential, g is
the gravitational acceleration, the third and the fourth terms represent
the nonlinear and the dispersive effects respectively.

If the ship is slender, the nonlinear effect can generally be ignored,
and the dispersive effect should be considered, which can present the
wave patterns of high-speed ship. Here ϕ x y( , ) is known as the local-
depth-averaged perturbation velocity potential of inner region, and
Φ x y( , ) is that of outer one. Thus, the governing equations in inner and
outer regions with the dispersive effect can be expressed as follows
respectively,
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where β F= − 1 ,H2
2 γ F H= / 3H2 .

The hull boundary condition can be written as,

ϕ x Vf x x l( , 0) = − ( ) as ≤y x (4)

where y f x= ( ) is the equation of a slender ship hull.
The flow on the interface of inner and outer regions should satisfy

the continuous matched conditions that the local-depth-averaged

perturbation velocity potential and transverse volume flux are equal
respectively (Gourlay, 2008; Zhang et al., 2015),

ϕ x w Φ x w hϕ x w HΦ x w( , − 0) = ( , + 0) and ( , − 0) = ( , + 0)x x y y1 1 1 1 (5)

Meanwhile, for the inner subcritical flow, the upstream and down-
stream boundaries at infinity should satisfy the condition of perturba-
tion attenuation. And for the outer supercritical flow, it is necessary to
set the moving backwards condition of ship wave.

Solving the above mathematical problems by using the Fourier
integral transform method, and the transformation and inverse trans-
formation forms of Fourier integral in inner and outer regions can be
expressed as follows respectively,
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The velocity and pressure field can be calculated after obtaining the
local-depth-averaged perturbation velocity potential. If ignoring the
third term of Eqs. (2) and (3), the SHPF analytical models without the
dispersive effect in restrict waterways can be derived, which have been
given in the authors' previous article (Zhang et al., 2015).
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Using the Fourier integral transform and the condition of perturba-
tion attenuation, Eq. (2) of inner region can become,
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When k changes from −∞ to +∞, the solutions of Eq. (11) have two
cases: σ > 01 or σ < 01 , which need to be discussed respectively.
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general solution of Eq. (11) can be written as,
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where A k( ) and B k( ) are undetermined coefficient.
Using Eqs. (6), and (4) can become,
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which is the even function about k, and where b S h= /(2 )max for shallow
water，Smax is the maximum cross-sectional area of ship.

Combing Eqs. (12) with (13), we can get,
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Fig. 1. Coordinate system of dredged channel.
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