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A B S T R A C T

To solve the problem of existing methods of terrain matching having low precision in the areas with small
eigenvalues, this work presents an Autonomous Underwater Vehicle optimal path planning method for seabed
terrain matching navigation to avoid these areas. The method demonstrates high matching precision on each
match area. This method has built the field map and value map that represents obstacle and matching
performance, respectively, and the planning algorithm, which includes dynamic matching algorithm, cost
function, search length and min-length, second-goal point and dynamic path planing algorithm, was proposed
on basic of A star algorithm. Terrain-entropy and terrain-variance-entropy were introduced as criteria in the
cost function to represent the matching performance. Then, joint criteria, which were calculated by a Back
Propagation Neural Network, and fuzzy criteria were introduced and proved to be feasible through simulation
experiments. The path planning method on the basic of fuzzy criteria, in terms of time consumption, was a more
suitable method than the one based on joint criteria for the same terrain matching accuracy.

1. Introduction

As a means for humans to explore the underwater world, the
Autonomous Underwater Vehicle (AUV) has gained more and more
attention all over the world, and considerable progress has been made
towards realizing an AUV.

Accurate navigation is a prerequisite for the success of the AUV
mission (Cox and Wei, 1995). The characteristics of underwater
operations make it impossible for an AUV to locate via GPS, and the
error accumulation of an INS will reduce navigation accuracy to an
unacceptable degree over time. Therefore, seabed terrain matching
navigation (STMN) is required to correct INS errors (Paull et al., 2014;
Groves et al., 2006). With the development of a wide swath bathymetry
system and the creation of a wide swath bathymetry system data
thinning method (Gui-Feng et al., 2013), high precision measurement
of the seabed terrain becomes possible, and the STMN becomes a
feasible way to solve the precise navigation of an AUV (Ziqi et al., 2015;
Chen et al., 2015).

Recently, the matching algorithm of STMN has already achieved
great development. Mok (Mok et al., 2013) introduced the adaptive
Extended Kalman Filter (EKF) method to the STMN algorithm and
proved its reliability by the simulation experiment. Donovan (2012)
proposed an STMN algorithm using a particle filter and proved that it
would obtain good location performance regardless of what sonar was

used (Doppler Velocity Log (DVL), single beam sonar, or wide swath
bathymetry system). Zhang (Zhang et al., 2014) proposed a robust
STMN algorithm that can significantly reduce the interference of the
outliers.

However, the richness of terrain features in terrain matching areas
also has a huge impact on navigation accuracy. Therefore, using the
path planning method for STMN is very important. Bar-Gill (Bar-Gill
et al., 1994) presented a method that consists of information theory-
based conditional entropy mapping and synthesizing minimum en-
tropy trajectories, but in this method, the vessel can only move one grid
at a time and the continuous operation of the sonar would lead to
energy wastage. Serin (Serin et al., 2011) presented a 3-D path
planning method using the Traveling Salesman Problem (TSP) assisted
by the viewpoint entropy and Greedy N-Best View Selection techniques
and proved it practical in real terrain and a road network dataset.
However, this method does not take into account the changes in the
terrain, and this would influence the reliability of the algorithm.

The greatest difficulty in path planning of STMN was choosing a
terrain representation method to analyze the matching performance of
an area. Chen (Chen et al., 2015) used Fisher criterion to analyze one
such method and proved it applicable for STMN, Fairbairn (2011)
proposed a terrain representation method using terrain entropy and
applied it to real terrain data. However, the terrain matching perfor-
mance could never be decided by just one feature. Wang (Wang et al.,
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2015) built the terrain features model using the terrain standard
deviation, fisher terrain information, and terrain entropy, but the
concept that the weight of each feature would change in different
terrains was ignored.

In this paper, one path planning method for STMN, on the basic of
an A star algorithm, is proposed. This method mainly uses terrain-
entropy and terrain-variance-entropy to analyze the matching perfor-
mance of an area, and the search length and dynamic matching
algorithms have been proposed to reduce time consumption. In
addition, the proposal of an Mean Square Deviation (MSD) threshold
make it possible to distinguish the changed terrain area and take
corresponding measures. The Back Propagation Neural Network
(BPNN) and fuzzy methods were used to calculate the weight of
entropy (criteria) in the cost function using joint criteria and fuzzy
criteria, and the feasibility was proved by a simulation experiment.

2. Optimal Path Planning Method

2.1. Definition of terrain-entropy

In the 1950s, Shannon introduced the concept of entropy in
information theory. Since then, entropy, which describes the expected
value of the information contained in each message, has been widely
used in the field of information matching and image processing (Xiao-
Su and Zhang, 2008). In the field of terrain matching, entropy was
defined as terrain-entropy, which described the expected value (aver-
age) of the terrain elevation contained in each area. The entropy (H S( ))
can be defined as:
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In region M N× , terrain elevation at the point i j( , ) is h i j( , ), and
terrain-entropy HM can be defined as:
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However, the terrain-entropy does not clearly show the features of
the terrain in some special samples. For example, as shown in Fig. 1,
most of the area (Area B) was flat and a smaller area (Area A) changed
sharply. For this kind of terrain, Area A should be more of a concern
than Area B. However, that has not been reflected in P in Eq. (2). In
order to decrease the weight of flat areas in information calculations,
terrain-variance-entropy was introduced, and the depth difference
value c i j( , ):
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was proposed to replace h i j( , ) in order to increase the weight of area A
in information calculating. The terrain-variance-entropy HF
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could clearly show the features of some of the special areas shown in
Fig. 1.

In the following paragraphs, for convenience and simplification, the
terrain-entropy and terrain-variance-entropy will be referred to as
entropy.

Mean Absolute Difference (MAD) and MSD values are the perfor-
mance metrics that measure the effect of terrain-entropy and terrain-
variance-entropy. Suppose a matching unit contains M N× entropy
values, where the entropy at point i j( , ) is H i j( , ) (in priori map) and
H i j( , )S (Real-time measurement of AUV).
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The position where MAD or MSD is minimum is the best match
location.

However, in most areas, the HM HF( ) values are big, and the
difference between them is quite small and hard to separate, so Eq.
(7) was used to make a distinction between the areas with similarly
large HM HF( ) values.

H n H n H
H H

′( ) = ( ) − min( )
max( ) − min( ) (7)

H n H H n H n″( ) = − ln(max( ′) − ′( )) = − ln(1 − ′( )) (8)

In Eqs. (7) and (8), H is the raw HM HF( ) data, H′ is the normalized
data, and H″ is the processed data.

Fig. 1. Diagram of special terrain.
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