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A B S T R A C T

A series of laboratory experiments related to Kuznetsov-Ma breather solution have been performed in a
seakeeping wave tank with different initial wave steepness and intermediate water depths. Analysis of the
experimental results reveals that the maximum wave height in Kuznetsov-Ma breather solution is normally
accompanied with a large crest amplitude, which can be largely reduced with the decreasing water depth due to
the slower modulational process and the limited length of wave tank, regardless of the initial nonlinearity. The
laboratory observations can be accurately simulated by the high-order spectral model (HOS) if the initial
Benjamin-Feir index is not very large as a result of weak nonlinearity and/or decreased water depth. Numerical
studies also indicate that in the evolutionary process the amplitude of carrier wave will decrease sharply and a
peak frequency downshifting can be detected. If the evolutionary time scale is long enough, the spectrum will
eventually evolve into a continuous one with the energy relocated in the lower wave frequency part. For
Peregrine breather solution that is a particular case of Kuznetsov-Ma solution, it is found that in some cases a
specific phase shift of the initial condition can lead to a longer distance for the wave group to travel to achieve
the first maximum amplitude and a larger amplification factor than that predicted by the theoretical solution.

1. Introduction

With the quick development of modern ocean engineering and the
more frequent appearance of extreme weather conditions, more
attention is paid to the safety of ships and marine structures encoun-
tering very large individual waves, because many vessels sunk or were
seriously damaged during the period from 1969 to 1994, due to the
sudden occurrence of rogue waves (Kharif et al., 2009).

Although a large number of observations of abnormal or rogue
waves have been reported by the ship crews, the exact measurements,
especially the corresponding records of wave series, are still very rare
due to the very localized and time limited occurrence of such waves.
One of the famous abnormal waves that has been recorded and widely
researched is the “New Year Wave”, which was formed in a storm in the
North Sea and hit the Draupner jacket platform on January 1st, 1995
(Taylor et al., 2006).

However, this measurement is only one single point registration of
a real sea abnormal wave, and it is still unfeasible to directly figure out
the spatial evolution in front of and behind the measure point even
though a compromised assumption that the freak wave occurred in a

long-crested or bi-directional sea state (Adcock et al., 2011) can be
applied. As a result, the laboratory experiments have become an
alternative to studying the complex dynamics of rogue waves.

With regard to the nonlinear features associated to water waves, the
milestone work was made by Benjamin (1967) who firstly confirmed
the existence of modulational instability or Benjamin-Feir instability
(Benjamin and Feir, 1967) in the laboratory experiments. Later, Lake
et al. (1977) found that the lower sideband amplitude can exceed that
of the initial carrier wave and the evolution of non-breaking wave trains
exhibits an approximate recurrence-type. A systematic study on the
modulational instability was made by Tulin and Waseda (1999) in a
large wave flume using wave trains with initially imposed sidebands. To
further observe the characteristics of modulational instability in the
later evolutionary stage, Hwung et al. (2007) conducted a series of
experiments in a much longer wave flume with a length of 300 m.

In addition, the more realistic sea states, characterized by the
JONSWAP wave spectrum, have been intensively studied by the wave
tank experiments in the past decade (e.g., Onorato et al., 2006, 2009;
Zhang et al., 2013), demonstrating that the nonlinear modulation can
result in a high probability of appearance of abnormal waves in the
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long-crested sea state, which will be largely decreased by the direc-
tional spreading effect in the short-crested sea state. Statistical and
spectral analyses of the laboratory experiments with various initial
wave spectra illustrate that the spectral width can play an important
role in the evolutionary process (Shemer et al., 2010). To better
understand the dynamics of rogue waves, a series of observations in
a wave tank related to breather solutions, even up to fifth-order
(Chabchoub et al., 2012a), have been reported recently, confirming
the existed forms of rogue waves with a water wall and/or deep hole
(Chabchoub et al., 2012b).

Meanwhile, the various numerical methods, working as a com-
plementary tool that is available to most researchers at very low cost,
have been widely used to accelerate the investigation of nonlinear
waves. For an ideal fluid the dynamics of surface gravity waves can be
described by a set of nonlinear partial differential equations known as
the Euler equations. Due to the complex nonlinearity, the Euler
equation cannot be easily solved even though different numerical
schemes such as the 2D conformal mapping method (Chalikov and
Sheinin, 1996, Zakharov et al., 2002) or the high-order spectral
method (West et al., 1987; Dommermuth and Yue, 1987) have been
proposed and developed. Compared with the former method that is
normally referred to as ChSh model, the latter one is an approxi-
mately fully nonlinear model if the order of nonlinearity is not large
enough.

In order to further shed some light on the inside physics of the
nonlinear water waves, several simpler models have been derived
under some specified conditions, for example, the different forms of
Zakharov's equation (Zakharov, 1968; Stiassnie and Shemer, 1984)
and various versions of Dysthe equation (Dysthe, 1979; Trulsen and
Dysthe, 1996). Among these simplified numerical models, the most
attractive one is the nonlinear Schrödinger equation (Zakharov, 1968;
Hasimoto and Ono, 1972) because of its considerable merits such as
being integrable (Zakharov and Shabat, 1972). Consequently, many
analytical solutions have been found and compared with the laboratory
experiments, clearly indicating the related physics inside the phenom-
enon such as the travelling envelope soliton (Yuen and Lake, 1982;
Slunyaev et al., 2013a).

Another class of important solutions is various breathers, one form
of which is the Peregrine breather solution (Peregrine, 1983) that was
first observed in a water wave tank by Chabchoub et al. (2011). Later,
numerical simulations of Akhmediev breathers were performed by
Slunyaev and Shrira (2013) by using Euler equations in a wide range of
parameters. Slunyaev et al. (2013b) also simulated the rational breath-
ers (and the Peregrine breather as a particular case) with the modified
NLS equations and the HOS method, and compared them with the
corresponding laboratory measurements. Due to the specific features,
these breather solutions can be considered as the prototypes of rogue
waves and have received intensive study recently (Clauss et al., 2011;
Chabchoub et al., 2012c; Onorato et al., 2013; Shemer and Alperovich,
2013).

However, as presented and discussed in the former published
works, these breather solutions reproduced in the wave tank are not
fully consistent with the theoretical predictions. A certain degree of
discrepancy can be detected, particularly after the formation of the
maximum wave. In order to further explore the characteristics of the
breather solutions, especially under different water depth condi-
tions, a series of laboratory experiments related to Kuznetsov-Ma
breather solutions (Kuznetsov, 1977; Ma, 1979) will be studied in
this work. Moreover, since the NLS equation is only valid to a certain
distance in the simulation of wave propagation (Trulsen and
Stansberg, 2001; Zhang et al., 2014b, 2015a), the approximately
fully nonlinear HOS model will be used to simulate these laboratory
experiments and perform a further study on their evolutionary
process.

2. Theory

2.1. High-order spectral method

In the case of irrotational motion of fluid that is considered to be
homogeneous, inviscid and incompressible, the 2D flow can be
described by a velocity potential ϕ (x, z, t), satisfying Laplace's equation
within the domain. The governing equation and its boundary condi-
tions are

ϕ x z t h z η x t∇ ( , , ) = 0, − ≤ ≤ ( , ),2 (1)

η ϕ η ϕ z η x t+ − = 0, = ( , ),t x x z (2)

ϕ gz ϕ z η x t+ + 1
2

(∇ ) = 0, = ( , ),t
2

(3)

ϕ z h= 0, = − ,z (4)

where η(x, t) is the free surface displacement. The origin of the vertical
coordinate z is located at the mean free surface. In terms of the velocity
potential ψ x t ϕ x η x t t( , ) = ( , ( , ), ) evaluated at the free surface, the
kinematic and dynamic boundary conditions can be rewritten as

η ψ η W η+ − (1 + ) = 0,t x x x
2

(5)

ψ gη ψ W η+ + 1
2

− 1
2

(1 + ) = 0,t x x
2 2 2

(6)

where W(x, t) denotes the vertical velocity at the free surface

W ϕ= .z z η x t= ( , ) (7)

In order to follow the time evolution of the surface elevation from
Eqs. (5) and (6), a Dirichlet problem of Laplace's equation for ϕ (x, z, t)
has to be solved first at each time step to obtain W.

It is well known that two slightly different versions of HOS method
were simultaneously and independently proposed by West et al. (1987)
and Dommermuth and Yue (1987). As summarized in Tanaka (2001a),
the procedure to obtain ϕ is the same in both versions, but there exists
an important difference in the way of calculating W. It has to be
stressed again that in numerical scheme of HOS method, the Taylor
series are normally truncated at some degree of nonlinearity, and that
is why it is called an approximately fully nonlinear model.

Furthermore, comparison of these two methods has been presented
by Clamond et al. (2006), whose results reveal that the formulation of
Dommermuth and Yue does not converge when the amplitude is very
high. Otherwise, it has been demonstrated in Bonnefoy et al. (2010)
that the errors reported in Dommermuth and Yue can be drastically
reduced and that convergence properties are conserved up to very high
nonlinearity (close to wave breaking limit) by using West formalism
with careful dealiasing. Based on the above discussions, the formula-
tion proposed by West et al. (1987) is adopted for the present study
(Toffoli et al., 2008, 2010; Slunyaev et al., 2014).

In order to be convenient to directly compare with the laboratory
observations, a simple numerical wave tank is set up in the following
section. The free surface boundary conditions expressed by Eqs. (5)
and (6) are rewritten in the following form:

η W F− = ,t
(1)

(8)

ψ gη G+ = ,t (9)

where W(1) denotes the linear vertical velocity, and F and G are the
nonlinear parts that can be further modified by a new adjustment
scheme if the initial condition is complex such as in the case of
JONSWAP sea state (Dommermuth, 2000; Ducrozet et al., 2007). In
short, the linear part of the equations is analytically integrated while
the nonlinear part of the system is computed numerically using a
classical fourth-order Runge-Kutta method with an adaptive time step.
Note that, the high frequency part in the system is very stiff to solve, the
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