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A B S T R A C T

This paper presents a general overview of the practical applicability of non-linear potential flow solvers for water
wave propagation. Those numerical models are unable to describe explicitly the wave breaking phenomena,
including free surface reconnexion, energy dissipation, etc. This reduces their range of application in real sea
waves, which are in the most general context irregular and directional wave fields. This study covers the
influence of discretization, water depth, directional spreading and spectral peakedness on the limitations in the
use of such non-linear potential models. The approach at use relies on a highly non-linear model based on the
High-Order Spectral method.

1. Introduction

The fine description of the water waves propagation is necessary to
ocean engineers, especially in the context of the numerical simulation
of wave-structure interactions. More and more efforts are dedicated to
the accurate description of extreme waves (and their possible interac-
tions with structures at sea). In this concern, highly and fully non-
linear potential flow solvers are the dedicated models for the descrip-
tion of the wave environment. For wave-structure interactions, the
usual approach, once the surrounding wave-field is accurately de-
scribed, is to couple such non-linear wave model with a specific model
dedicated to the solution of the interactions. Depending on the main
physical processes at play, these can use e.g. non-linear potential flow,
Reynolds-Average Navier-Stokes (RANS) equations, Smooth Particle
Hydrodynamics (SPH), etc. Several ways to perform the coupling exist:
spatial, temporal or mathematical decomposition (the so-called
SWENSE approach, see e.g. Luquet et al., 2007). The use of such
procedures is still necessary for the practical solution of wave-structure
interactions, primarily due to the computational effort inherent to the
direct solution of the problem thanks to advanced Computational Fluid
Dynamics (CFD) solvers.

At the same time, the study of non-linear wave processes is also of
interest with an increased concern with the extreme sea-states as well as
with the formation of large waves in a given sea state (the so-called freak
or rogue waves Haver, 2004). The accurate description of the correspond-
ing wave fields is accessible through the non-linear potential flow solvers.
Consequently, they are now popular to answer the previous needs and for
practical applications in the context of wave-structure interactions.

However, the formalism adopted is limited to non-breaking waves,
reducing the range of application in real sea waves. This limitation is
mainly due to: i) the irrotational flow assumption which is violated
when having free surface reconnection, air entrapment, etc. (see e.g.
Lubin et al., 2006) and ii) the inviscid fluid assumption, which does not
allow to take care of the consequent dissipation of energy. We indicate
that some efforts are currently done to model the main effects of the
breaking process on the wave field evolution (see e.g. Perlin et al.,
2013). However, we restrict our study to original nonlinear potential
flow solvers without such modeling.

This papers intends to present the practical applicability of such
models with respect to the different wave conditions. These are usually
described as irregular directional wave fields. The possible limitation of
the solvers will be assessed with the equivalent of scatter diagrams, i.e.
validity with respect to the significant wave height Hs and peak period
Tp of the corresponding sea state. The proposed study covers the
influence of numerical discretization, water depth, angular and fre-
quency spreading.

The approach used here relies on highly non-linear numerical
simulations based on the High-Order Spectral (HOS) method initiated
by West et al. (1987) and Dommermuth and Yue (1987). This method
has been widely validated and applied to several configurations, e.g.
modulational instabilities Fernandez et al. (2014); Toffoli et al.
(2010a), nonlinear energy transfers Tanaka (2001), bi-modal seas
Toffoli et al. (2010b), freak waves Ducrozet et al. (2007); Xiao et al.
(2013); Sergeeva and Slunyaev (2013) among others. This method can
consequently be considered as a good example of non-linear potential
flow solvers: it is mature and accessible to practical engineering
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applications. The implementation provided in the open-source HOS-
ocean code Ducrozet et al. (2016) will be used throughout the study.

The paper will be divided as follows, the first part presents the non-
linear wave propagation model based on the HOS method and the
different initial conditions accessible within the model. Then, the
second part focuses on the methodology chosen to assess the limita-
tions of the non-linear simulations as well as some existing theoretical
and experimental results concerning the presence of breaking events in
the different configurations. In the end, the last part focuses on the
description of the influence of some of the key parameters for regular
and irregular sea states applicability ranges. This part will enable an
overview of the practical capabilities of the non-linear potential flow
solvers.

2. Numerical wave model

The study of large-scale and long-term evolution of non-linear
directional wave fields relies on the existence of accurate and efficient
numerical methods. In this concern, highly and fully non-linear
potential flow solvers are the dedicated models. Indeed, in non-break-
ing wave conditions, the essential physics are included in the non-
linear potential formalism. Within this class of approximation, several
different numerical approaches exist that are briefly reminded here-
after. We also indicate that in such models, different methodologies can
be used to take into account the effect of the wave breaking on the sea-
state evolution. However, this is still an active field of research (e.g.
Perlin et al., 2013) and a definite model is still needed. In this study, we
consequently restrict the field to nonlinear potential flow solvers
without any dissipation model.

The whole numerical domain may be discretized (i.e. in horizontal
and vertical directions) leading to volume methods. Usually, after the
application of a σ-transform, such models solve efficiently the problem
in a fixed computational domain. We refer for instance to the
development of OceanWave3D model based on a finite-difference
discretization of the volume problem Bingham and Zhang (2007);
Engsig-Karup et al. (2009).

An alternative in potential flow formalism is to solve the problem
on its boundaries, reducing the number of unknowns. Those methods
are referred as Boundary Element Methods (BEM). Up to now, the
main limitation with these is the computational effort which appears as
prohibitive for large-scale and long-term computations (even with the
latest developments of Fast Multipole Algorithms, see e.g. Fochesato
and Dias, 2006).

In the end, the problem may be solved on the free surface only
usually making use of the Hamiltonian formulation of the free surface
problem. Efficient and accurate solution of this surface problem is
usually achieved thanks to pseudo-spectral methods, namely High-
Order Spectral (HOS) or Dirichlet to Neumann Operator (DNO)
approaches (which are equivalent, see Schäffer, 2008). The main
limitation is here associated to the geometry that has to be simple
(usually rectangular domain in horizontal directions and constant
water depth).

In this section, the highly non-linear potential flow wave model at
use to assess the range of applicability of this class of method is
described. The detailed set-up of the numerical computations using
this HOS method is also given with a specific attention paid to the
initial conditions.

2.1. High-Order Spectral method

In this study, all numerical simulations are performed with the
HOS method. This method has been initiated by West et al. (1987) and
Dommermuth and Yue (1987). Open-source HOS-ocean code Ducrozet
et al. (2016) will be used and we refer to the different publications
related to this model for examples of validation Bonnefoy et al. (2009);
Ducrozet et al. (2007).

We consider a rectangular fluid domain D of horizontal dimensions
L L×x y and constant water depth h associated with a Cartesian
coordinate system. Its origin O is located at one corner of the domain
with Oxy( ) representing the horizontal axes and Oz( ) the vertical one
oriented upward with z=0 located at the mean free surface. We are
working under the potential flow theory (assuming the fluid to be
incompressible and inviscid and the flow irrotational). Then, continuity
equation reduces to the Laplace equation for the velocity potential ϕ.

Boundary conditions close the system of equations. Periodicity is
assumed in horizontal directions x and y. These lateral boundary
conditions, associated to the bottom one, allow us to define a spectral
basis on which the velocity potential in the whole volume will be
expanded. At the same time, surface quantities are also expressed on a
spectral basis allowing the use of Fast Fourier Transforms (FFTs). We
consider the free surface boundary conditions which are written,
following Zakharov (1968), using surface quantities namely the free
surface elevation η and the free surface velocity potential
ϕ x y t ϕ x y η x y t t( , , ) = ( , , ( , , ), )∼

. z η x y t= ( , , ) describes the free surface
position, assuming no wave breaking occurs (i.e. the free surface is a
single valued function of x and y). The kinematic and dynamic free
surface boundary conditions then read
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with ∇the horizontal gradient and W x y t x y η t( , , ) = ( , , , )ϕ
z

∂
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velocity at the free surface. This is the only quantity beyond the system
(1)–(2) which needs solution in the water bulk. Later on W will be
evaluated thanks to the order consistent HOS scheme of West et al.
(1987). Once the vertical velocity is evaluated, it is possible to advance
in time the two unknowns η and ϕ∼ thanks to an efficient 4th order
Runge-Kutta Cash-Karp scheme with adaptive step size Cash and Karp
(1990).

The HOS procedure relies on a series expansion in wave steepness ϵ
up to the so-called HOS order M of the velocity potential. Expanding a
Taylor series around z=0 and collecting terms at each order in wave
steepness leads to a triangular system. A similar series expansion for
the vertical velocity leads to another triangular system, which is solved
iteratively. This enables an arbitrary choice of the order of nonlinearity
M.

The resulting numerical method is pseudo-spectral and exhibits
very interesting convergence properties: exponential convergence rate
with respect to the horizontal discretization as well as with the HOS
order M Bonnefoy et al. (2009). Thus, this HOS model features high
efficiency and accuracy compared to other advanced methods for wave
propagation, see Ducrozet et al. (2012).

2.2. Initial conditions

The HOS method allows the accurate and efficient propagation of
wave fields with possibly high level of non-linearity. As stated
previously, the method has been widely validated in several configura-
tions, e.g. nonlinear energy transfers Tanaka (2001), modulational
instabilities Fernandez et al. (2014); Toffoli et al. (2010a), bi-modal
seas Toffoli et al. (2010b) or freak waves Ducrozet et al. (2007); Xiao
et al. (2013); Sergeeva and Slunyaev (2013).

Then, the numerical simulations rely on the definition of relevant
initial conditions of interest. Once the free surface elevation
η x y t( , , = 0) and velocity potential ϕ x y t( , , = 0)∼

are specified, the two
unknowns are advanced in time with the previous HOS procedure.
Within HOS-ocean, different kind of initial conditions are accessible,
starting from regular waves up to directional irregular sea states.

The regular waves are initialized thanks to the nonlinear regular
wave solution of Rienecker and Fenton (1981), based on the stream
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