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A B S T R A C T

In this paper, a hybrid visual servo (HVS) controller is proposed for underwater vehicles, in which a
combination of the vehicle's 3-D Cartesian pose and the 2-D image coordinates of a single feature is exploited.
A dynamic inversion-based sliding mode adaptive neural network control (DI-SMANNC) method is developed
for tracking the HVS reference trajectory generated from a constant target pose. A single hidden-layer (SHL)
feedforward neural network, in conjunction with an adaptive sliding mode controller, is utilized to compensate
for dynamic uncertainties. The adaptation laws of neural network weight matrices and control gains are
designed to ensure the asymptotical stability of tracking errors and the ultimate uniform boundedness (UUB) of
neural network weight matrices. The main advantage of the proposed DI-SMANNC over conventional sliding
model neural network controllers lies in the fact that the knowledge of the bounds on system uncertainties and
neural approximation errors is not required to be previously known. Simulation results are presented to validate
the effectiveness of the developed controller, especially the robustness with respect to dynamic modeling
uncertainties and camera calibration errors.

1. Introduction

Visual servoing, also known as vision-based control, uses a camera
system to provide feedback signals for a robotic system, such that a set
of visual features moves through the image frame to reach a desired
configuration (Chaumette and Hutchinson, 2006, 2007). Visual servo-
ing methods fall into three categories based on the type of information
used in the feedback signals: (1) Position-based visual servoing (PBVS),
where feedback is defined in terms of the relative 3-D Cartesian
information reconstructed from obtained images, (2) Image-based
visual servoing (IBVS), where feedback is directly defined in terms of
image feature coordinates, and (3) Hybrid visual servoing (HVS), also
called 2.5-D visual servoing, where a combination of partially recon-
structed 3-D Cartesian information and 2-D image-space information
is used in the feedback control design.

Over the past few decades, visual servoing has gained a lot of
research interests with applications in industrial, aerial, and wheeled
robots. This technology is applied to dynamic positioning (DP) or
station keeping of underwater vehicles operated near the seafloor or
subsea facilities since the 2000s (Sørensen, 2011). For an underwater
vehicle, visual servoing uses low-cost visual features rather than

acoustic beacons, and inherently has the advantage of higher resolution
and update-rate compared to acoustic positioning systems. Lots et al.
(2000) applied an HVS technique to maintain the position of an
underwater vehicle with respect to a fixed planar target. The dynamic
controller was simplified by using a steady thrust mapping with
saturation. In another paper, Lots et al. (2001) introduced an IBVS
technique with a proportional-integral-derivative (PID) controller to
solve a similar station-keeping problem, where only the surge and sway
degrees-of-freedom (DOF) were considered. Silpa-Anan et al. (2001)
designed and implemented a positioning controller for an underwater
vehicle using a standard computed torque method, based on the
position and velocity feedback provided by a binocular camera system.
Caccia et al. (2007) estimated the motion of near-seafloor vehicles
using a laser-triangulation sensor with optical correction, and designed
and implemented high-precision motion control using a gain-schedul-
ing PI controller. Bechlioulis et al. (2013) described a PBVS system to
stabilize an underwater vehicle, where the state vector was estimated
using an extended Kalman filter (EKF). Heshmati-alamdari et al.
(2014) employed self-triggered model predictive control (MPC) in a
PBVS approach based on a kinematic model for an underactuated
underwater vehicle, in which the vehicle pose was estimated using a
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visual system. Hua et al. (2014) proposed a homography-based visual
servoing approach to stabilize a fully-actuated vehicle by exploiting the
homography matrix containing the transformation information be-
tween the current and desired camera coordinates. Li et al. (2015)
proposed a visual docking method for an underwater vehicle using two
cameras at the nose. A two-layer control system composed a homing
controller and an attitude tracking controller was designed. The
authors (Gao et al., 2016a) proposed a hierarchical IBVS control
architecture for underwater vehicles, composed of a nonlinear model
predictive kinematic controller and an adaptive neural network dy-
namic controller. In a recent work (Gao et al., 2016b), we designed a
PBVS controller for underwater vehicles to track a time-varying
reference trajectory based on the estimated pose by an unscented
Kalman filter with visual measurements.

In summary, the PBVS approach, which is mostly employed for
underwater vehicles, simplifies the controller design, but relies heavily
on exact camera calibration to reconstruct the vehicle's 3-D pose by
fusing visual and motion information. The aforementioned IBVS and
HVS controllers use only visual information from multiple features for
feedback control and orientation reconstruction, as those applied to
robot manipulators. In a real underwater environment, light is highly
attenuated by the water mass and scattered by suspended particles;
which make it hard to identify and locate multiple features with low-
quality images. The orientation reconstructed from images by a
conventional HVS approach is sensitive to image noises and camera
calibration errors. Another drawback of IBVS and classical HVS
algorithms lies in that only local asymptotic stability can be obtained
(Chaumette and Hutchinson, 2006, 2007), because the dimension of
visual feedback is greater than the number of system DOFs.

In practice, different to a robotic manipulator that uses only
cameras for motion detection, a work-class underwater vehicle is also
equipped with various motion sensors, including a depth sensor, an
altimeter, an attitude and heading reference system, and a Doppler
velocity log to provide position, orientation, and velocity information
for feedback control. In this paper, motivated by this fact, we propose a
novel HVS approach by integrating the visual information of a single
point-like feature and the global pose information into the system state
(Gao et al., 2016c).

An underwater vehicle is a highly nonlinear, heavily coupled system
with uncertain hydrodynamic parameters and suffering from environ-
mental disturbances, which makes the control task challenging (Shi
et al., 2017). Various nonlinear control methods have been developed,
including sliding mode control (SMC) (Zhu and Sun, 2013; Zhang and
Chu, 2012; Cui et al., 2016), robust adaptive control (Fischer et al.,
2014; Zool et al., 2016; Soylu et al., 2016), neural network (NN)
control (Zhang et al., 2009; Du et al., 2013; Chu et al., 2016; Peng and
Wang, 2017), model predictive control (Shen et al., 2016b; Shen et al.,
2017), energy-based control (Valentinis et al., 2015), and active
disturbance rejection control (Shen et al., 2016a). In particular, neural
network-based mode reference adaptive control (MRAC) (Johnson and
Kannan, 2005) has showed an excellent performance even in the
presence of uncertainties through comprehensive simulations and in-
water tests (Proctor, 2014). In NN-based adaptive controllers, linearly
parameterized radial basis function (RBF) and nonlinearly parameter-
ized single hidden-layer (SHL) neural networks are widely employed as
adaptive elements to model continuous nonlinear dynamics as well as
all uncertainties in the plant. An RBF NN acts as a universal
approximator only for suitably chosen basis functions, and the number
of required basis functions increases dramatically with the dimension
of input vectors. By conducting a detailed comparison of these two NNs
in the flight control of unmanned aerial vehicles, Anderson et al. (2009)
indicated that an RBF NN controller has a slower update rate than an
SHL one, and is more susceptible to overfitting errors and improper
learning.

Conventionally, the closed-loop stability of an NN-based control
system is restricted to ultimate uniform boundedness (UUB) because

of residual NN approximation errors (Johnson and Kannan, 2005;
Lewis, 1999). A direct method for removing the inherent error is to
integrate a robustifying term, such as SMC, into the NN-based
adaptive control law (Wai and Muthusamy, 2013). Patre et al. (2008)
incorporated a robust integral of the sign of the error (RISE)
feedback term with an NN-based feedforward compensator to
achieve semi-global asymptotic tracking for uncertain dynamic
systems. However, the asymptotical stability of control systems still
relies on the assumption that the upper bounds of ideal network
weights and approximation errors are previously known, especially
for nonlinear SHL NNs.

To remove this assumption, Sun et al. (2011) designed an RBF NN-
based sliding mode adaptive controller for trajectory tracking of robot
manipulators. The enhanced asymptotical convergence of tracking
errors was achieved by incorporating an SMC-like time-varying robus-
tifying term with adaptive gains driven by error signals. Unfortunately,
this approach cannot be directly applied to nonlinear SHL NN-based
adaptive controllers.

In this paper, motivated by the adaptive SMC designed by Li and Xu
(2010), we present a dynamic inversion-based sliding mode adaptive
neural network controller (DI-SMANNC) for the HVS control of
underwater vehicles to handle vehicle dynamic uncertainties, including
external disturbances. Compared with the existing underwater visual
servo systems, the main contributions of the proposed approach are
two-folds.

(1) This proposed HVS scheme is more robust and practical than
conventional visual servoing approaches of underwater vehicles,
because only a single visual feature is required, which reduces the
system complexity and computational load of image processing.
The orientation directly obtained by motion sensors are more
reliable than those reconstructed from images in a classic HVS
system.

(2) The control gains in the proposed DI-SMANNC are updated online
to ensure asymptotical stability without any knowledge of the
upper bounds on uncertainties and neural network weights, which
simplifies the controller design. This method is also valid for other
nonlinear robotic systems, e.g., manipulators as presented in Wai
and Muthusamy (2013) and Sun et al. (2011).

The remainder of this paper is organized as follows. Section 2
describes the mathematical formulation of the HVS problem, including
the models for an underwater vehicle and a downward-looking visual
system. Section 3 details the DI-SMANNC development for HVS of
underwater vehicles. The asymptotical stability of visual servoing
errors and the boundedness of neural network weight matrices are
proven by a Lyapunov method. In Section 4, simulation studies with a
six DOF underwater vehicle are presented to illustrate the performance
of the proposed controller, and test the robustness with respect to
dynamic modeling uncertainties and camera calibration errors. Finally,
some concluding remarks are provided in Section 5.

Notations. Let  denote the real number, n the real n-vectors, and
m n× the real m n× matrices. 0m n× is an m × n zero matrix consisting of

all 0 s, and In is an n × n identity matrix. Superscript “T” indicates

matrix transposition. We use the notation x x x= T to indicate the 2-
norm of vector x for any x ∈ n . Given aA = [ ]ij , the Frobenius norm is

defined by aA A A= tr( ) = ∑F ij
2 T 2 with tr(⋅) being the trace operation.

2. Problem formulation

2.1. Modeling of underwater vehicles

This section describes the underwater vehicle model presented
by Fossen (2002) for control design and simulations. The kinematic
and dynamic equations of an underwater vehicle is developed with the
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