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A B S T R A C T

The problem of a circular porous plate horizontally submerged in water is investigated within the context of
linear potential theory. The porous plate is either fixed in monochromic waves or forced to oscillate in the heave
or pitch mode in still water. Darcy's law is applied to give the boundary conditions on the porous plates. The
boundary value problems are solved semi-analytically by means of the eigenfunction-expansion for multiple
regions. Two approaches that have commonly been adopted in previous studies are both used in the present
study. The hydrodynamic forces acting on the plates are evaluated. Comparisons are made between the results
of these two methods and good agreement is observed. The effects of wave parameters, the submerged depth
and the porosity of plates are discussed. The Haskind relation is examined and confirmed for the porous plate as
well.

1. Introduction

Along with the expansion of ocean engineering to deeper and
deeper sea areas, the requirements of effective and inexpensive wave
barriers have been increased to protect devices moored in open seas,
such as sea cages used in aquaculture. Porous materials, which are
effective at dissipating wave energy, have attracted substantial research
interest. During recent decades, many studies, both theoretical and
experimental, have investigated the hydrodynamic performance of
breakwaters made of porous materials and evaluated the wave loads
acting on the barriers.

Here, only a few examples are discussed from among the plethora
of previous studies. A porous wave-maker theory was proposed and
developed by Chwang and Li (1983), and by Chwang (1983), to
investigate the effect of porosity on free-gravity waves based on the
linear wave theory and Darcy's law. The interaction between a
submerged porous disk and ambient wave field was investigated by
means of the matched eigenfunction expansion (Chwang and Wu,
1994; Cho and Kim, 2000; Cho and Kim, 2008; Bao et al., 2009; Zhao
et al., 2010; Zhao et al., 2011; Cho and Kim, 2013). In these previous
studies, the eigenvalues are generally complex numbers. In a different
approach, instead of applying Darcy's law, Molin and his research
group suggested a quadratic relationship between the pressure differ-
ence and the traversing velocity across the porous plate, the latter of
which is specified by an eigenfunction expansion to avoid complex
eigenvalues (Molin and Legras, 1990; Molin and Nielsen, 2004; Molin

et al., 2007). This expansion of the traversing velocity is also applied in
other studies, such as those by Liu et al. (2008) and Liu and Li (2011).
Cho et al. (2013) extended the method to study dual submerged
horizontal porous plates and their analytical results are validated by
a series of experiments.

As discussed above, two approaches were mainly adopted in the
previous works. In the first approach, a ‘complex wave number’ is
sought, and the corresponding eigenfunctions are then determined.
However, in the second approach, the traversing velocity distribution
across the porous plate is specified by proper expansions.

To compare these two methods in the present work, the problem of
a porous circular plate submerged horizontally in water is studied
within the scope of linear potential theory. The plate is either fixed in a
monochromic wave field or forced to oscillate in still water in the heave
or pitch mode, i.e., both the diffraction and radiation problems are
considered. Darcy's law is applied to the porous boundary condition.
The problem is solved based on the matched eigenfunction expansion.
The fluid domain is divided into two regions and different expansions
are searched in these regions. They are matched at the common surface
to determine the unknown coefficient in the expansions, and the wave
loads acting on the plate are calculated. Both methods mentioned
above are used to solve the problem and the computed results are
compared. The Haskind relation, i.e., the wave exciting forces calcu-
lated from the corresponding radiated waves, is checked for the porous
plate as well in the present work.

Following the introduction, the boundary value problem is pre-
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sented. Approaches to solve the problem are then discussed in the next
section. The calculation of wave loads, including the added mass and
damping, follows. Some computed results are demonstrated and
discussed. A brief summary presents the paper's conclusions.

2. The boundary value problem

A circular plate with a radius a is assumed to be horizontally
submerged in water with a depth of h at a depth of d beneath the water
surface. The plate is made of a porous material with fine holes. The
plate is either fixed in a train of regular waves or is oscillating in the
heave or pitch mode in still water. It is noted that the forced oscillation
in the surge, sway or yaw mode is trivial for a thin plate, and the roll
mode may be considered similarly to the pitch mode due to the
symmetry. To evaluate the hydrodynamic forces acting on the plate, a
cylindrical coordinate system is adopted to describe the problem. Its
horizontal plane, i.e., the r–θ plane, coincides with the still water
surface, whereas the z-axis goes through the center of the circular plate
and points vertically upwards (see Fig. 1).

The viscosity is assumed negligible, and the motion amplitude is
assumed small, so the problem will be solved within the scope of linear
potential theory. Further, assuming a harmonic motion with a fre-
quency ω, the velocity potential Φ(r, θ, z, t) can be expressed by the
product of the harmonic exponential function of the time variable and a
field potential ϕ(r, θ, z), depending only on the position, such as:

Φ r θ z t ϕ r θ z e( , , , ) = Re{ ( , , ) }.iωt− (1)

The latter is further decomposed into the diffraction and radiation
potentials, i.e.
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where g denotes the gravitational acceleration, ω is the angular
frequency and A is the amplitude of the incident waves, and ξs is the
amplitude of the forced oscillation in the heave (s=3) and pitch (s=5)
modes, respectively. The diffraction potential consists of the incident
wave potential ϕ0 and the scattering potential ϕ7, i.e., ϕD = ϕ0 +ϕ7. The
incident wave potential ϕ0 is known and is written as follows:
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where β indicates the incident wave angle, and, due to the symmetry of
the circular plate of the present study, it is set to β=0 hereafter with no
loss of generality.

All the potentials are governed by the Laplace equation in the fluid
domain. In addition, the linearized free surface condition is imposed at
the mean water surface, and there is an impermeable condition at the
sea bottom. The Sommerfeld radiation condition is satisfied by the
scattering and radiation potentials (s=3, 5, 7) in the far field. On the
body surface, i.e., on the circular porous plate, Darcy's law is applied
with the assumption of fine pores. The normal velocity is taken to be
continuous through the porous plate and its magnitude is proportional
to the pressure difference between the two sides of the plate. In
summary, the boundary value problem consists of the following
equations:
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where k0 is the wave number that satisfies the dispersion relation: k0
tanh k0h=ν=ω

2/g.
In the porous boundary condition (4d), the quantity z=–d+0 (or –

d–0) indicates the location just above (or beneath) z=-d. In the special
case of d=0, i.e., when the porous plate coincides with the water
surface, it is difficult to define a potential in the region above the plate.
To overcome this obstacle, it is assumed that the linear free surface
condition (4b) is still valid at z=0, and then the potential can be
represented by its vertical derivative, which is continuous across the
plate. The relation at the porous boundary is reduced to the following
form:
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The porous effect parameter σ in Eq. (4d) is a real and positive
number, which is normalized by the wave number k0 to obtain the so-
called porosity parameter b=2πσ/k0. For the value b=0, the porous
plate becomes a solid plate. At the other extreme, i.e.b → ∞, the porous
plate is transparent or no longer exists. As a result of a series of
systematic experimental investigations in the previous work (Zhao
et al., 2011), an empirical formula is deduced to relate the porosity
parameter b to the puncture ratio τ of the plate:

b ε τ
τ

= (17.80/ + 143.2)
1 + 1.06

,
2

(6)

where the puncture ratio τ is defined as the ratio of the total area of the
holes to the whole area of the plate, and the wave slope is given by
ε=Ak0.

Fig. 1. Definition of the coordinate system and the division of the fluid domain for a
submerged horizontal circulate plate.
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