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A B S T R A C T

In this paper, a new adaptive neural network control approach is developed for a class of remotely operated
vehicles whose velocity state and angular velocity state in the body-fixed frame are unmeasured. Unlike most
previous control approaches, it doesn’t need thrust model and the thruster control signal is considered as the
input of control system directly. Using local recurrent neural network to approximate the unknown nonlinear
functions, an adaptive observer is introduced for state estimation. Under the framework of the backstepping
design, adaptive neural network control law is constructed based on the output of local recurrent neural network
and state estimation. The stability analysis is given by Lyapunov theorem. The effectiveness of the proposed
control scheme is illustrated by simulations.

1. Introduction

A remotely operated vehicle (ROV) works in a complex marine
environment. In underwater observation, manipulator operation and
other tasks, a stable and high precision control system can provide
higher working efficiency (Mohan and Kim, 2015; Chen, 2008; Shim
et al., 2010). Recently, many control approaches have been proposed
for dynamic positioning, trajectory tracking and path following (Souza
and Maruyama, 2007; Hoang and Kreuzer, 2007), such as sliding mode
control (Zhang and Chu, 2012; Chu et al., 2016b), adaptive control
(Miao et al., 2013), neural network control (Chatchanayuenyong and
Parnichkun, 2006) and so on. In these control approaches, it is mostly
assumed that all the states of ROV system are known. Obviously, this
assumption can’t be met by most ROVs. Because of the small ROVs are
only equipped with the sensors for position and orientation measure-
ment, but without Doppler Velocity Log (DVL), inertial navigation
system and other sensors for velocity and angular velocity measure-
ment (Li et al., 2013; Gao, et al., 2004; Zhang, et al., 2009). Some large
ROVs are equipped with DVL, but they sometimes need to perform
bottom-following control for some special tasks (Silvestre et al., 2008).
If the altitude is very low, DVL may be unable to work. Therefore, it
needs to be considered in the controller design of ROVs that the
velocity state and angular velocity state in the body-fixed frame cannot
be measured directly.

Since the position and orientation in the earth-fixed frame can be
measured directly, ROV is an observable system. Considering the

complexity and uncertainty of ROV modeling, some adaptive control
methods based on high gain observer have been proposed (Boizot et al.,
2010; Hankovic, 1997; Lee and Khalil, 1997; Tong and Li, 2002). One
of the advantages of a high gain observer is that the information of the
ROV dynamic model is not needed, and a large gain coefficient can be
used to guarantee the convergence of state estimation errors, so that
the velocity state and angular velocity state in the body-fixed frame can
be estimated online. However, the large gain coefficient will be
introduced into the control law, which will result in the system output
oscillation and affect the tracking quality. Based on the above con-
siderations, the high gain observer is not very suitable for ROV control.
In these adaptive control methods, neural network are usually used for
adaptively learning of unknown term of ROV dynamic model.
Therefore, we consider that if the information from online identifica-
tion can be used to construct the full order observer. Thus, the large
gain coefficient will not be needed and the problem of that how to
improve the learning accuracy and speed of neural network is only
needed to be taken into account.

In addition, the actual input of ROV control system is the thruster
control signal (Gan et al., 2004), so ROV is a nonaffine nonlinear
system essentially. Thus, it is very difficult to design the control law to
obtain the thruster control signal directly. In most previous control
approaches, the outputs of controllers are usually thruster thrust, then
the thruster control signal is calculated by the thrust model (Yu et al.,
2008; Fischer et al., 2014; Lapierre and Jouvencel, 2008). However,
the thrust model is related to not only the control signal but also the
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advance speed of the propeller (Alessandri et al., 1999), so that it is
very difficult to establish the accurate thrust model (Kim and Chung,
2006). In practical control process, the inaccurate thrust model may
influence the control performance (Zhang and Chu, 2012). Therefore,
the problem that how to obtain the thruster control signal directly
without thrust model needs to be considered, and then a high precision
tracking control system can be obtained.

In this paper, considering the complex nonlinear relationship
between thrust and control signal, an affine transformation is carried
out for thrust model and a scale factor is introduced, thus the thruster
control signal can be seen as the input of the tracking control system
directly. Since it is difficult to accurately establish ROV's dynamics
model and the velocity state and angular velocity state in the body-fixed
frame cannot be measured directly, an adaptive state observer based on
local recurrent neural network is proposed to estimate the velocity state
and angular velocity state online. Furthermore, the scale factor of
thrust model is also estimated by adaptive learning. According to the
estimated values of observer and the output of local recurrent neural
network, the adaptive control law is designed. The uniformly ultimately
bounded of tracking error is analyzed by Lyapunov theory and is
verified by simulation results.

This paper is organized as follows. ROV's tracking control problem
is described in Section 2. In Section 3, the observer-based adaptive
neural network tracking controller is given. In Section 4, the effective-
ness of the proposed method is verified by simulation results. Finally,
we make a brief conclusion of the paper in Section 5.

2. Problem formulation

The mathematical model of a ROV in 6 DOF can be described as
(Biggs and Holderbaum, 2009):

η J η v
Mv C v v D v v G η τ B τ u

̇ = ( )
̇ + ( ) + ( ) + ( ) + = ( )d (1)

where η denotes the vector of position and orientation in the earth-
fixed frame, v is the vector of velocity and angular velocity expressed in
the body-fixed frame. M is an inertia matrix including extra mass, the
matrix C(v) groups centripetal and Coriolis forces, including the
centripetal force and Coriolis force produced by extra mass, D(v) is
the hydrodynamic damping term, the vector G(η) is the combined
gravitational and buoyancy forces in the body-fixed frame, τd is the
external disturbances, J(η) is the kinematic transformation matrix
expressing the transformation from the body-fixed frame to earth-fixed
frame, τ(u) is the thruster thrust, u is the thruster control signal and B
is distribution matrix of thrusters.

In Eq. (1), τ(u) is a nonlinear function about the thruster control
signal and the advance speed of the propeller, where the latter is a
variable that might be difficult to measure in actual. Therefore, the
accurate thrust model is very difficult to be established. In this paper, a
Taylor expansion will be introduced to convert (1) into an affine
nonlinear system, thus the thrust model is not needed and it will also
be convenient for control law design. The Taylor expansion of τ(u)
about u* is given as:
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where i=1,…, n, n is the number of thrusters and γi is a scale factor:
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Define x=[x1;x2], x1=η, x2=J(η)v. According to (1) and (2), it can be
obtained:

x Ax b f x B x γu̇ = + ( ( ) + ( ) )1 (4)

where u=[u1, …, un]
T is the vector of thruster control signals.

γ=diag([γ1, …, γn]). f(x), B(x1), A and b are as shown in (5)–(8),
respectively.
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When using (4) to describe the tracking system for a particular ROV
system, it has the following property:

Property 1. The state x2 and control law u are all bounded,
namely:

x x u u≤ , ≤2 20 0 (9)

where x20, u0 are known positive constants.
As can be seen from (4), after the affine transformation, an affine

nonlinear system is obtained, which will be convenient for control law
design. However, since the ROV's dynamic model is difficult to be
established accurately, the nonlinear function item f(x) is unknown. In
addition, due to the fact that the ROV is usually not equipped with the
sensors to measure the velocity state and angular velocity state in the
body-fixed frame, the state x2 is unknown. Therefore, the control
objective of this paper is to develop a control law u such that the
tracking error is uniformly ultimately bounded under the situation that
the ROV dynamic model is unknown and the state x2 is unmeasured.

3. Controller design

In (4), since the nonlinear function item f(x) is usually unknown,
neural network is mostly used for online learning. In most neural
network based-adaptive controllers, RBF neural network, BP neural
network, and recurrent neural network are usually used. However,
these neural networks have some disadvantages (Zhang and Chu,
2012). For example, in the RBF neural network-based adaptive
controller, if there is a big disturbance or the desired value has an
abrupt change, the weights of neural network would take a long time to
converge. Although the recurrent neural network can overcome this
problem, the learning efficiency of recurrent neural network is very
poor. Therefore, the local recurrent neural network were proposed in
(Zhang and Chu, 2012; Chu et al., 2016a). Compared with the
traditional recurrent neural network and BP neural network, there
are only some of the hidden layer neurons regress to recurrent layer in
local recurrent neural network. As the training results given in (Chu
et al., 2016a), it shows that the local recurrent neural network has the
advantages of faster learning speed and good learning performance and
it also very suitable for adaptive control for ROVs. In this paper, the
local recurrent neural network will be introduced into observer
designing, and then the adaptive control law will be constructed. The
structure of the local recurrent neural network are shown in Fig. 1.

For the local recurrent neural network as shown in Fig. 1, from the
nonlinear mapping ability of neural network, there are optimal network
weights W, V, such that:

f x Wφ VH ε( ) = ( ) + (10)

where x=[x1; x2] is the input vector of input layer neurons. H=[x; H1] is
the input vector of hidden layer neurons. H1 is the output vector of
recurrent layer neurons, which is equal to the output of the hidden
layer neurons with recurrent structure. W is the weight matrix between
hidden layer neurons and output layer neurons. V is the weight matrix
between input layer neurons, recurrent layer neurons and hidden layer

Z. Chu et al. Ocean Engineering 127 (2016) 82–89

83



Download English Version:

https://daneshyari.com/en/article/5474493

Download Persian Version:

https://daneshyari.com/article/5474493

Daneshyari.com

https://daneshyari.com/en/article/5474493
https://daneshyari.com/article/5474493
https://daneshyari.com

