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A B S T R A C T

A semi-analytical method is present to analysis the vibration response of submerged stiffened combined shells.
In general, the submarine hull can be modeled as submerged stiffened combined conical-cylindrical-spherical
shells. The precise integration method is imported to develop a precise transfer matrix method (PTMM). The
dynamic model is established to solve the dynamic responses of the combined shell in vacuo. The fluid load is
described by wave superposition method (WSM). Then the structural responses of a submerged stiffened
submarine hull can be obtained by coupled PTMM and WSM method. The effectiveness of the present method
has been verified by comparing the frequency parameters of the combined shells and the structural responses of
the submerged spherical shell with existing results. Furthermore, the effects of the model truncation, stiffness,
damping and fluid load on the structural responses of the combined shells are studied.

1. Introduction

Nowadays combined shells are widely used in main ocean en-
gineering, such as submarine, underwater vehicle, torpedo, underwater
robot, and pipelines. The dynamic response of underwater elastic
structure can be solved by many numerical methods including finite
element method (FEM) (Everstine, 1997; Damatty et al., 2005),
boundary element method (BEM) (Seybert et al., 1990; Ventsel et al.,
2010) and so on (Galletly and Mistry, 1974; Liu and Chen, 2009; Ming
et al., 2013). Based on the discrete element meshes and constructing
the low order shape functions to solve the fluid-structure interaction
problem, all these numerical methods above are limited by the
calculated frequency and cannot explain the physical mechanism.
Analytical methods are only applicable to the vibration analysis of a
few simple underwater structures such as spherical shells (Chen, 2003)
and cylindrical shells (Laulagnet, 1990). Up to now, many scholars
focus on the vibration and acoustic radiation of the cylindrical shell.
The cone vertex of conical shell results in tension-bending coupling
term existing in the constitutive equation. It certainly increases the
mathematical complexity. Then semi-analytical and semi-numerical
methods are being welcome (Sivadas and Ganesan, 1993). Irie et al.
(1984) presented the transfer matrix method to study the free vibration
of joined conical-cylindrical and annular plate-cylindrical shells.
Efraim and Eisenberger (2006) proposed a dynamic stiffness matrix
method for analyzing the dynamic behaviors of a coupled conical-

cylindrical shell. Caresta and Kessissoglou (2010a, 2010b) analyzed the
vibro-acoustic responses of a submarine under harmonic force excita-
tion. A wave superposition method which has better computation
efficiency and calculation accuracy than the boundary element was
proposed based on Helmholtz boundary integral equation (Koopmann,
1989). Based on the two-dimensional fast Fourier transform (2D FFT)
algorithm, a wave superposition spectral method with complex radius
vector efficiently analyzed the acoustic radiation of an axisymmetric
body (Lu, 2011). Qu et al. (2013) investigated free vibration character-
istics of conical-cylindrical-spherical shell combinations with ring
stiffeners by a modified vibrational method. An accurate modified
Fourier series solution which is used to analyze free vibration of
truncated conical shells with general elastic boundary conditions was
developed (G. Jin et al., 2013a, 2013b, 2014a, 2014b). Su et al.. (2014)
employed a unified solution method for free vibration analysis of
functionally graded cylindrical, conical shells and annular plates with
general boundary conditions. Chen et al. (2015) analyze free and forced
vibration characteristics of ring-stiffened combined conical-cylindrical
shells with arbitrary boundary conditions.

In this paper, the idea of precise integration method (PIM) (Zhong,
2004) is borrowed to improve the traditional transfer matrix method
(TMM). The combined shell is divided into N sections. Based on precise
integration method, the field transfer matrix of each section can be
solved precisely by using a power series solution. After assembling the
whole transfer matrixes of theses sections into an entire matrix and
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considering the boundary conditions, the dynamic response in vacuo
can be solved easily. Based on the above calculation process, the
method called precise transfer matrix method (PTMM) is developed.
The authors propose a PTMM for solving structural vibration of
combined shells in vacuo. A wave superposition method (WSM) is
employed to analyze the effect of the fluid load. Then the authors
present a coupled PTMM and WSM for determining the structural
responses of stiffened combined shells in fluid. This method is
particularly suitable for evaluating the vibration response of distribu-
tive systems regardless of the frequency and structural dimension.
Then the dynamic response of a complex combined shell can be
obtained finally. A combined shell and typical spherical shell taken as
an example is calculated by the presented method and compared with
the literature data. The comparison exhibit the present method is of
high accuracy and efficiency. The convergence analysis for the present
method is also analyzed. At last the structural parameters and fluid
load are taken into account besides the effects of model truncation.

2. Dynamic model of the combined shell

The submarine hull can usually be modeled as a finite ring-stiffened
conical-cylindrical- spherical shell. All the shell components of com-
bined shell accord with the form of shells of revolution, as illustrated in
Fig. 1. The combined shell is described with a o-s,θ,r coordinate
system, in which s is measured along the meridian, r is the radial
coordinate, and θ is the circumferential coordinate. It is assumed that
all the shell components and ring stiffeners are made of homogeneous
and isotropic materials..

2.1. The combined shell

The time dependent harmonic term e jωt is suppressed in the
formulation for simplicity of the analysis. Based on the Flügge shell
theory (Flügge, 1973), the equations of shells of revolution are written
in a matrix differential equation as follows
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where R, h is the radius and thickness of the shell. K is bending rigidity
Eh μ/12(1 − )3 2 .α = 0, 1 denotes symmetric mode and anti-symmetric
mode.

2.2. The external load

The external load result from the propulsion electric machine,
lubricant pump, and sea water pump and the fluctuating force due to
the rotation of the propeller. So the conical shell component of the
combined shell is excited by the fluctuating forces in both the axial and
radial directions. The mechanical excitations acting on the shell can be

simplified as concentrated forces fi (i=1, 2…N). Then the ith concen-
trated force can be expressed as

f x θ f δ s s δ θ θ R( , ) = ( − ) ( − )/i i i i i0 0 0 (3)

where f i0 denotes the amplitude of the force, s i0 denotes the position of
the force in the generatrix direction, θ i0 denotes the position of the force
in the circumferential angle.

For a given circumferential wave number n, the external force
acting on the combined shell can be expressed as

F RK f f f= [0 0 0 0 0 ] ,n
r

n
c

n
a T−1 (4)

where fn
r , fn

cand fn
a represent the radial force, circumferential force and

axial force respectively.

2.3. Junction of the shell components

The relation between the displacement of the cylindrical shell
component u v w φ, , , and the displacement of conical shell component
u v w φ, , ,c c c c should keep the continuous. Then the displacement com-
patibility conditions in the junction can be derived as (Ma et al., 2014)
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Similarly, the relation between force of the cylindrical shell
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According to the force and displacement compatibility condition,
the state vectors of the conical shell component and the cylindrical shell
component both located in the junction satisfy

Z T Zs L s L( = ) = ( = ),cyl
L

P con
R

(7)

where Z s L( = )cyl
L denote the state vectors of right section of the

junction. Z s L( = )con
R denote the state vectors of left section of the

junction. TPis a point transfer matrix of order 8×8. In the same way, the
transfer matrix in the other junction can be obtained according to the
force and displacement compatibility condition.

2.4. The ring-stiffener

If the ring-stiffener is laid on the cylindrical shell component, the
stiffener is perpendicular to the shell's axis. According to the displace-
ment compatibility condition in the junction of the cylindrical shell and
the stiffener, the relation between centroidal displacement of the
stiffener components u, v, w, φ and neutral surface displacement of
cylindrical shell component u , v , w , φcan be derived as
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where e denotes linear eccentricity. Similarly, the force compatibility
condition in the junction can be derived as
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Fig. 1. Schematic diagram of a stiffened shell of revolution.
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