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A B S T R A C T

The purpose of this paper is to provide a correction for the optimum distribution of circulation of propellers and
turbines, though its effect is more noticeable in turbines. The correction is related to the fact that, when looking
for the optimum, the induced speeds are derived with respect to the circulation, but the component associated to
the change in direction of the free vortices has been traditionally neglected. The main result is thus a new
expression for the derivatives of the induced velocities obtained by including the effect produced by a change in
wake pitch due to an infinitesimal change of the circulation. The net contribution of this paper is an improved
method for hydrokinetic turbine optimization, built upon the propeller vortex lattice framework, which is
consistent with prior optimization methods for propellers but improves upon prior optimization methods for
turbines. The result extends the theory to non-uniform axisymmetric flows. Further analysis of Lerbs/Munk
original theory is provided. Example propeller and turbine designs demonstrate the utility of the Present
method.

1. Introduction

The paper is motivated on the fact that the optimization methods of
classic lifting-line theory have traditionally failed when used for turbine
design. This is well known and explained, for instance, in Epps and
Kimball (2013a). The objective of this paper is thus to provide a
correction for the optimum distribution of circulation of propellers and
turbines. This correction is related to the fact that, when looking for the
optimum, the induced speeds are derived with respect to the circula-
tion. However, the component of this derivative associated to the
change in direction of the free vortices has been traditionally either
neglected or avoided due to its relative complexity.

If it is avoided is by applying instead Munk's theorem, as done in
Betz (1919) and Lerbs (1952). Lerbs (1952) used this assumption
proposed in Munk (1923) to obtain his criterion for the optimum
distribution of circulation for a propeller. Unfortunately this same
assumption applied to turbines results in a non-optimum outcome.

In this paper, we will show this issue and solve the same problem
tackled by Lerbs without using Munk's assumption. We will do so by
calculating the neglected component, which could be assessed numeri-
cally once some convergence issues are solved, as mentioned in
Menéndez Arán and Kinnas (2012). However, an analytical expression

is possible for the case of an infinite number of blades. We will obtain
this expression in Section 2. In Section 3 we will use this expression in
the numerical design of a specific turbine and propeller, comparing the
results with older methods. Section 4 details the mathematical
manipulations needed to obtain the expression for the optimum. The
derived expression will provide a very small correction to propellers,
where Lerbs’ criterion will be recovered in moderately-loaded condi-
tions, but a more significant correction to turbines.

For the numerical comparisons given in Section 3 we will use
OpenProp (see the web (Epps and Kimball 2013b)) to compare several
optimization criteria, where some are based on Munk's assumption and
others are not. OpenProp is a free software that applies the lifting-line
theory to the design of propellers and turbines. A summary is given in
Epps (2010) and the most recent information is given in Epps and
Kimball (2013a).

1.1. Vortex lattice lifting-line theory

Reference (Kerwin and Hadler, 2010) explains the theory of lifting
line. Many authors have contributed to its development: Lanchester set
the bases of the theory in Lanchester (1907). Prandtl developed it for
propellers in Prandtl (1921) using an approximate formulation for the
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induced velocities. Goldstein improved the calculation of the induced
velocities for the case of uniform inflow in Goldstein (1929). Then,
making the best of Glauert's sine series method (Glauert, 1947)
(though the 1st edition dates from 1926), Lerbs and Wrench estab-
lished the application of lifting-line theory for propellers in axisym-
metric non-uniform inflow respectively in Lerbs (1952) and Wrench
(1957). Kerwin has worked extensively in the application of vortex-
lattice methods to the theory, as in Kerwin (1961).

The representation of a screw with the lifting-line method uses Z
lines, one for each blade of the screw (Fig. 1). Bound vortices spread
out along each line with a distribution of circulation Γ r( ) that begins at
rh, which is the external radius of the hub, and ends at R, which is the
radius corresponding to the blade tip. Free vortices of circulation are
shed from the blades of the propeller/turbine, creating helicoidal
surfaces downstream.

The loads on the screw can be readily evaluated by invoking the
Kutta-Joukowski theorem, where lift is given by ρ V Γ* , and by ignoring
viscous forces. ρ is the fluid density,V* is the total speed at one point in
the lifting line (considering the effect from the induced velocities), and
Γ is the circulation around this same point. The thrust T and torque Q
produced by the screw are:
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with all (m) summation terms evaluated at r r m= ( )c , which are known
as control points. u m*( )a and u m*( )t are respectively the axial and
tangential induced velocities in the lifting line at r m( )c .

For extension to non-zero swirl inflow V r( )t , replace ω r with
ω r V r+ ( )t throughout. Viscous forces can be handled by including a

viscous drag term ρ V c C( *) D
1
2

2
in each of these summations (Kerwin

and Hadler, 2010), but this is not presented herein for clarity. In this
expression c is the chord length of the blade section, and CD is the drag
coefficient of the section.

Fig. 2 shows a two-dimensional diagram of speeds and forces in a
propeller blade element. Fig. 3 shows the same for a turbine blade
element. We will consider the screw is the only element producing
vorticity to the flow. This is, there is no nozzle. We will also consider
the screw is working in a steady regime and in an incompressible fluid.

The axial u( *)a and tangential u( *)t induced velocities at an arbitrary
point r m( )c of the lifting line can be obtained from the contributions of
all free vortices:
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where u m n*( , )a and u m n*( , )t are the axial and tangential velocities
induced at r m( )c on the key blade by Z unit-strength ‘horseshoe
vortices’, each surrounding the nth panel of each blade (where a
horseshoe vortex consists of a segment of the lifting line and the
trailing vortex filaments shed from its endpoints). The horseshoe
influence functions (u*a and u*t ) are in general computed via the
Biot-Savart’s law, but for a purely helical wake, they can be evaluated
analytically using the formulas in Lerbs (1952) and Wrench (1957), as
detailed in Chapter 2.

Nomenclature

r radius
β r( ) pitch angle
β r( )i pitch angle including the velocities induced at the screw

plane
βd pitch angle including the velocities induced downstream
w r( )x wake coefficient at a radius r
VS design speed (ship or current speed)
V r( )a inflow axial speed
V r( )t inflow tangential speed
ω rotational speed of the propeller or turbine
u r*( )a axial induced speed at r in a lifting line
u r*( )t tangential induced speed at r in a lifting line
V r*( ) local speed including the induced velocities at a radius r in

a lifting line
u*∼

a mean axial induced velocity at the screw plane
ρ fluid density
Z number of blades or lifting lines
rh hub radius
R maximum radius of the screw
D diameter of the screw: (D =2 R)
A area swept by the screw: (A= πR2)
Γ r( ) distribution of circulation along the lifting line
c r( ) chord length of the blade at a radius r
CD drag coefficient of the foil section
T total thrust of the propeller (if bigger than 0) or turbine (if

smaller than 0)
Q total torque of the propeller or turbine
CT thrust coefficient, C T ρ πR V= /(0.5 )T S

2 2

J advance ratio, J π V ωR= ( )/( )S
η efficiency
ηO optimum efficiency

η* efficiency related to a change of circulation, equal to T V
Q ω

′
′

S

in a propeller.
rc control position at the lifting line where the induced

velocities and forces are calculated
rv radial position at the lifting line where a free vortex is

shed
rg radial position at the lifting line around which a horseshoe

vortex with radius rv+1 and rv is shed
rg radial position at the lifting line around which a horseshoe

vortex with radius rv+1 and rv is shed
u r( )ad d , u r( )td d total axial and tangential velocities induced down-

stream at rd
u r r( , )a c v , u r r( , )t c v axial and tangential velocities induced at rc (in the

lifting line) by Z free vortices of unit circulation
shed from rv in each lifting line

u r r*( , )a c g , u r r*( , )t c g axial and tangential velocities induced at rc (in the
lifting line) by Z horseshoe vortices of unit
circulation shed around radius rg in each lifting
line

Fig. 1. Representation of a screw using 1 lifting line (in bolt black) for each blade, a free-
vortex surface (in grey) shedding from each line, and the distribution of circulation (in
blue) along each lifting line. In this picture rh =0 and Z =3. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this
article.)
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