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A B S T R A C T

In this paper, we provide a closed-form analytical solution for the reflection of linear long waves propagating
over a series of submerged rectangular breakwaters which are located on sloping seabed. It shows that the peak
value of reflection coefficient decreases while the slope of seabed increases. And moreover, in view of the present
analytical model, the magnitude of the peak Bragg resonant reflection should be affected by the number of
breakwaters, dimensionless breakwater submergence and width for the given slope gradient of seabed. Finally,
the optimal collocation curves for Bragg resonant reflection are presented for different number of breakwaters.
As applications, these optimal collocation curves can be used as quantitative indicators for engineers.

1. Introduction

As we know that when the ocean surface waves propagate from
deep water into shallow water, many important physical phenomena,
such as shoaling, reflection, refraction, diffraction and so on, may
appear due to the change of seabed topographies or underwater
structures. More specifically, if the seabed topography or underwater
structure is periodic, then the so-called Bragg resonant reflection may
happen while the Bragg resonant reflection condition is met. For the
extensive studies of Bragg resonant reflection phenomenon over
natural periodic sandbars and sand ripples by experiments, theoretical
analysis and numerical simulation, ones may refer to Davies and
Heathershaw (1984), Heathershaw (1982), Cho and Lee (2000),
Davies (1982), Liu et al. (2012), Mei (1985) and Dalrymple and
James (1986), Kirby (1986) respectively.

Nevertheless, since the direct application of natural periodic
sandbars and sand ripples into coastal engineering technology is
impossible. So in 1988, Mei et al. first proposed a very interesting
design, that is, we may build a series of small-size, low-height and
shore-parallel submerged artificial bars to prevent the drilling platform
from the attack of storm waves on the oil fields in the Ekofisk of the
North Sea. We can also call these types of submerged artificial bars are
Bragg breakwaters since the phenomenon of Bragg resonant reflection.
Until now, various shapes of Bragg breakwaters have been suggested
and studied into coastal engineering technology. Such as, rectangular,

triangle, trapezoid, rectified cosine, parabolic, semi-circular and half-
ellipse, etc. For more details, see Refs. Cho et al. (2001), Hsu et al.
(2002, 2001, 2007); Kirby and Anton (1986), Wang et al. (2006).

To our knowledge, the studies on the optimal collocation of Bragg
breakwaters are still few. In Hsu et al. (2003), in view of extended
hyperbolic mild-slope equation, the authors considered the Bragg
resonant reflection of forward and oblique incident wave by multiply
composite artificial bars. They found that the Bragg resonant reflection
can be significantly improved by the way of increasing the number and
height of artificial bars. In Chang and Liou (2007), the authors studied
the Bragg resonant reflection of trapezoidal artificial bars by the matrix
multiplication method in accordance with the long-wave equation.
Their conclusions showed that the top plane width and arrangement of
trapezoidal were two important parameters affecting the design of
multiple composite Bragg breakwaters. Obviously, by observation, we
know that the results described above are still more focused on the
qualitative analysis than the precise quantification in the design of
Bragg breakwaters.

More recently, motivated by the aforementioned contributions,
Zeng and Liu et al. in their papers (Zeng et al., 2013; Liu et al.,
2014) and Liu et al. (2015) provided different optimal collocation
curves for rectangular, triangular, rectified cosine, idealized trapezoidal
and parabolic Bragg breakwaters, respectively, located on horizontal
seabed by long waves. However, as we know, in reality when the ocean
surface waves propagate from the areas of deep water into the near-
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shore, the depth of seabed should be more and more shallow in most
cases. Therefore, considering Bragg breakwaters located on the sloping
seabed will be more in line with practical problems. Thus this paper can
be seen as the continuous work of Zeng et al. (2013), Liu et al. (2014)
and Huan-wen et al. (2015).

The paper is structured as follows. In Section 2, we first construct a
new model which states that a series of rectangular Bragg breakwaters
located on the sloping seabed. And then, based on the technique of
matrix multiplication, we obtain an exact analytical solution while the
linear long ocean surface waves propagate over the constructed model.
In Section 3, to illustrate the positivity of our results, we consider the
model validation in three aspects. And moreover, the validation against
the Bragg resonant reflection is provided in Section 4. In Section 5, by
employing the present analytical solution, several important para-
meters, such as the number of breakwaters, dimensionless breakwater
submergence and width, and so on, which may influence the peak
Bragg resonant reflection are discussed in detail. In Section 6, the
optimal collocation curves are given for different number of rectangular
breakwaters, which may be very important and useful in the funda-
mental design and construction of Bragg breakwaters in engineering.
And finally, for convenience of reader, we post the conclusions of our
paper in Section 7.

2. Analytical solution for reflection coefficient

In this section, we shall study a model which states that the linear
long waves propagate over a series of submerged rectangular break-
waters which are parallel to the coastline and uniformly located on the
sloping seabed, as shown in Fig. 1. Based on the technique of matrix
multiplication, we will deliver the analytical approach for the reflection
coefficient of the model under consideration.

Assume that the x-axis positively points in wave incident direction
and is set on the mean water depth. The original coordinate system is
set at the toe of the ascending slope of seabed. From Fig. 1, we derive
that the water depth function h(x) can be represented as the piecewise
function of

⎧
⎨
⎪⎪

⎩
⎪⎪

h x

h x
h x x x j N
h x β x x x j N
h x x

( ) =

, if ≤ 0,
, if ∈ [ , ], = 1, 2,…, ,
− tan , if ∈ [ , ], = 1, 2,…, − 1,

, if ≥ ,

j j

j j

N

0

1 ,1 ,2

0 ,2 +1,1

2 ,2 (2.1)

where N stands for the number of breakwaters, βtan represents the
slope of seabed, and hp p( = 0, 1, 2) denotes the constant depth of
water.

In what follows, in accordance with the theory of linear long waves,
the water surface elevation η x( ) should satisfy the long-wave equation
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in which ω and g stand for the angular frequency of the waves and
gravitational acceleration, respectively.

Now, let us suppose that the incident waves of unit amplitude
comes from the left of Fig. 1, combining with (2.1) and (2.2), we may
obtain the solution of long-wave Eq. (2.2) in the sense of constant
depths which can be expressed as follows
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here i k ω gh p= −1 , = / ( = 0, 1, 2)p p represents the wave number,
AR and AT are the complex amplitudes of the reflected waves and the
transmitted waves, respectively, all A A A A j N, , , , = 1, 2,…,R T
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to be determined. Obviously, the reflection coefficient

K A=R R

and the transmission coefficient

K A= .T T

Next, if x x x j N∈ [ , ], = 1,…, − 1j j,2 +1,1 , inserting (2.1) and (2.2), we
have
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By the auxiliary transforms of
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we may reformulate equality (2.4) to

t d η
dt

dη
dt

ση+ + = 0,
2

2 (2.6)

where σ ω g β= /( tan )2 2 . By observing, we see that Eq. (2.6) is a second-
order differential equation which can be transformed into a typical
Bessel equation of order 0, for more details, refer to Lin and Liu (2005).
Therefore, the water surface elevation η x( ) in the region
x x x j N∈ [ , ], = 1,…, − 1j j,2 +1,1 is written by
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Then, for the end of deriving the reflection coefficient of the model,
we apply continuity of the surface elevation and the mass conservation
cross the common boundaries. Assume that x x= ∼ is a common
boundary, the continuity of the surface elevation is
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and in the regime of linear wave theory, which is equivalent to
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In addition, the mass conservation requires that

x
ϕ x

x
ϕ xd

d
( , 0) × the left sectional area = d

d
( , 0)

× the right sectional area,

x

x

∼

∼

−

+

that is

h x
x

ϕ x h x
x

ϕ x( ) d
d

( , 0) = ( ) d
d

( , 0) ,∼ ∼
x x

− +∼ ∼− +
(2.9)

or

h x
x

η x h x
x

η x( ) d
d

( ) = ( ) d
d

( ) ,∼ ∼
x x

− +∼ ∼− +
(2.10)

which degenerates intoFig. 1. A sketch of the model.
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