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A B S T R A C T

An analytical model based on linear potential theory is proposed to predict the three-dimensional wave
diffraction from a truncated cylinder with an upper porous sidewall and an inner column in the finite water
depth. The velocity potential is analytically derived in the whole fluid domain based on the method of variable
separation and eigen-function expansion technique. The continuous conditions of pressure and velocity
potential are satisfied on the interface between the adjacent sub-domains. Wave forces are calculated directly
from the incident and diffracted potentials. The model is validated in comparison with other published results of
wave diffraction from a porous bottom-mounted cylinder and impermeable truncated cylinder, respectively.
Then the numerical tests are performed to investigate the effects of the porous coefficient G, the draft ratio h/h1
(h and h1 mean the drafts of the porous part and whole cylinder, respectively), the ratio of the inner and outer
radii b/a and the water depth d/h1 (d means the water depth) on the wave forces acting on the structure. It is
found that, by introducing an upper porous sidewall, the hydrodynamic loads are improved in comparison with
the fully impermeable structure, which may be benefit to enhance the survivability of the relating marine
structure.

1. Introduction

Wave exciting forces are key elements to be considered for the safe
operation of marine structures, such as breakwaters, wave power
devices and offshore platforms (Hirdaris et al., 2014). Effective
optimization of the wave loads on the structure may lead to the
reduction in the cost of offshore structures. Structures with porous
portion constitute an important class of maritime structures. By
comparing with the impermeable structure, wave force acting on the
porous structures is relatively reduced and the wave reflection is
decreased, thus the porous structure is favored while the wave force
reduction or excellent wave attenuation performance is needed
(Chwang and Chan, 2003; Chandrasekaran et al., 2015; Teng et al.,
2000).

There has been a great deal of effort directed towards quantifying
wave interactions with porous ocean structures. Generally, the porous
structures may be divided into two categories, i.e., bottom-mounted
structures and truncated structures. The former was mainly focused on
the porous breakwaters and bottom-mounted cylinders. The use of
porous structures as breakwaters was extensively investigated both
theoretically and experimentally (Jarlan, 1961; Yu and Chwang, 1994;

Hu et al., 2002; Williams and Li, 1998; Yu, 1995; Liu et al., 2006,
2008). A detailed review of the studies on the interaction between
waves and perforated breakwaters can be found in Huang et al. (2011).
Three-dimensional (3-D) wave diffraction from an array of bottom-
mounted cylinders with porous sidewalls were investigated by Williams
and Li (2000), Park et al. (2014), Sankarbabu et al. (2007) and Li et al.
(2004). It was found that the porous sidewall can significantly reduce
both the hydrodynamic loads experienced by the cylinders and the
wave run-up. Mandal and Sahoo (2015) dealt with the hydroelastic
problem of concentric flexible porous cylinder systems in two-layer
fluid. The results showed that the full wave reflections in the surface
and internal modes may occur for some special cases. However, the
investigation of perforation in the truncated structures is still quite rare
up to now. Williams et al. (2000) theoretically studied the wave
diffraction and radiation from a floating cylinder whose middle part
is porous and found that the porous part of the structure has a
significant influence on the horizontal hydrodynamic force. However,
its influence on the vertical force is relatively weak. Recently, the
hydrodynamic characteristics of the porous structures used as the
bottom mounted offshore platform and tension leg platform were
investigated theoretically (Lee and Ker, 2002; Chandrasekaran and
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Sharma, 2010; Chandrasekaran et al., 2015).
The porous materials as ocean structures can reduce the wave

exciting force, which has been testified in the previous studies
(Chandrasekaran et al., 2015). Since the most wave energy propagates
nearby the free-surface, a porous sidewall surrounding an inner
column as the top part of a truncated structure to dissipate energy
(see Fig. 1) is expected to have the potential to efficiently reduce the
wave loads. The proposed structure (see Fig. 1) can be regarded as the
refit of the traditional impermeable structure or the compound
structure. To the authors' best knowledge, there is little research to
study the hydrodynamic characteristic of such type of structures. The
proposed structure is expected to improve the hydrodynamics in
comparison with the impermeable truncated structures. The latters
have been extensively investigated by Wolgamot et al. (2012), Göteman
et al. (2014), Zheng and Zhang (2015), Kara (2016), Ning et al. (2016),
Johanning (2009) and Johanning et al. (2001). This paper aims to
study the diffraction problem of a truncated circular cylinder with top
porous sidewall and to quantify the effects of various wave and
structural parameters on the wave loads. Analytical solution based on
linear potential flow theory for wave diffraction from such a truncated
cylinder is derived using the eigen-function expansion approach.
Different from the analytical solutions of hydrodynamic problem of
the general truncated cylinder with porous part (Williams et al., 2000;
Lee and Ker, 2002), the effect of the imaginary part of the porous
coefficient is considered and the present model can conveniently deal
with the diffraction problem of truncated cylinder and the bottom-
mounted cylinder with the surface-piercing porous part.

The paper is organized as follows. In Section 2, the governing
equation and boundary conditions are described. In Section 3, the
analytical derivation of the diffraction problem is given. In Section 4,
the results are presented and discussed. Finally, the conclusions are
presented in Section 5.

2. Theoretical formulation

The problem of wave diffraction from a truncated circular cylinder
with an upper porous sidewall outside an inner cylinder is considered
as shown in Fig. 1. Symbols a, b, h, h1 and d represent outer cylinder
radius, inner cylinder radius, draft of the upper porous part, draft of
the whole cylinder and the static water depth, respectively. A cylind-
rical polar coordinate (r, θ, z), combined with a Cartesian coordinate (x,
y, z), is built with its origin located at the center of the cylinder on the

still-water level.
The structure is subjected to regular surface waves propagating in

the positive x-direction with a wave height H (H=2 A, where A is wave
amplitude) and an angular frequency ω. Under the frame of linear
potential theory, the fluid can be described in terms of a complex
velocity potential Φ r θ z t ϕ r θ z e( , , , ) = Re[ ( , , ) ]ωt−i , where Re denotes
the real part of a complex expression, i the imaginary unit and
ϕ r θ z( , , ) represents the spatial potential. Subsequently, the common
time-dependent term e−iωt can be dropped from all the dynamic
variables.

As shown in Fig. 1, the fluid domain is divided into three regions:
an interior region defined by Ω1 (-h≤z≤0, b≤r ≤a); an exterior region
defined by Ω2 (-d≤z≤0, r ≥a) and another region beneath the cylinder,
i.e., Ω3 (-d≤z≤-h1, 0≤r ≤ a). Since the present study is solved in the
frequency domain, the velocity potential in each region Ωj is denoted
by ϕj, j=1, 2 and 3. Each potential satisfies Laplace equation in the
corresponding flow region, namely

ϕ j Ω∇ = 0 for = 1, 2, 3 inj j
2

(1)

The potential also satisfies the appropriate boundary conditions on
the free-surface, and sea-bed, namely
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where g is the acceleration due to gravity.
The boundary condition on the impermeable surface of cylinder can

be expressed as
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The boundary condition on the porous circular wall can be
expressed as follows (Sollitt and Cross, 1972; Yu, 1995):

ϕ
r

kG ϕ ϕ r a h z
∂
∂

= i ( − ) for = , − < < 01
1 2 (8)

where k is the wavenumber,
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(1 − )m , δ is the

physical thickness of the porous wall (the thickness is negligible
geometrically) and γ, f and Cm are the porosity, the linearized
resistance coefficient and the added-mass coefficient of the porous
medium, respectively (Yu, 1995). The parameter G can be write as Gr+i
Gi, where Gr denotes the real part and Gi the imaginary part.
Physically, Gr and Gi represent the drag term and the inertia term,
which lead to the wave energy loss and the phase change, respectively
(Teng et al., 2000; 2001).

On the cylindrical surface of r=a, the potentials should satisfy the
following matching conditions：
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The velocity potentials in the flow region consist of the incident

Fig. 1. Definition sketch.
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