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ARTICLE INFO ABSTRACT

Keywords: In general, multi-fluid multi-interface problems are more complicated than single-phase problems and
Kelvin-Helmholtz instability therefore require sophisticated and robust algorithm development. In this study, a moving particle semi-
MPS implicit (MPS) method based on the Lagrangian approach was extended to a multi-phase system with multiple
Particle method interfaces. Accordingly, several new particle interaction models, including self-buoyancy-correction, surface
Multiphase flow tension, and interface boundary condition models, were introduced. Representative multi-liquid MPS sloshing
simulation results were compared with corresponding experimental results with three liquids. The results agree
well for both global behaviors and the much smaller-scale interfacial instability phenomenon called the Kelvin—
Helmholtz instability (KHI). The validated multi-phase MPS method was subsequently applied to the classical
Poiseuille problem of two fluids flowing with different velocities between two parallel plates The KHI is triggered
when the destabilizing effect of a shear across an interface with a sufficient relative velocity overcomes the
stabilizing effect of gravity and surface tension. Both viscosity and surface tension tend to limit the growth of
KHIs when they are over certain values. For many possible combinations of density ratios and surface tensions
producing the same Richardson-number, the body-force component plays a much more important role than the

surface-tension component if the interfacial wave number is not very high.

1. Introduction

In general, in the case of multiple-liquid layers, more complicated
interfacial phenomena can exist than in the single-liquid problem.
Examples include internal waves, fluid mixing, and instabilities. To
simulate the multi-liquid interaction problem numerically, several
methodologies and special treatments have been introduced to both
the Eulerian and Lagrangian approaches.

In the Eulerian approach with a grid system, the most representa-
tive approach for free-surface tracing is the volume-of-fluid (VOF)
method (e.g., Chen, 2010). VOF is an advection scheme for tracking
and locating the free surface and interface. However, it may not be
robust when interfaces have fragmentations and large and/or sharp
deformations. In this regard, a hybrid Eulerian—Lagrangian method,
such as the particle-in-cell (PIC) method, has been suggested to use the
Lagrangian frame for interface tracing on the Eulerian grid system.
This is a well-structured concept to maintain interface sharpness with
low-level computing resources; however, the coupling of the Eulerian
and Lagrangian frames can still pose minor problems.

Conversely, a fully Lagrangian approach called the particle method
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can more straightforwardly handle interfaces with large and/or sharp
deformations and fragmentations because the Lagrangian approach
can trace every particle with physical properties. There have been two
major developments in Lagrangian particle methods: smoothed parti-
cle hydrodynamics (SPH); (e.g., Monaghan, 1994) and moving particle
semi-implicit (MPS) methods. The MPS method was introduced by
Koshizuka and Oka (1996) for free-surface hydrodynamic problems
and was subsequently developed with improved algorithms by Gotoh
(2009) and Lee et al. (2011). The MPS method has also been developed
to tackle multi-fluid problems. For example, Khayyer and Gotoh (2013)
introduced a density averaging scheme to relieve numerical problems
caused when the density ratio of the two fluids is very large. The surface
tension model in the MPS method was introduced by Nomura et al.
(2001) and the buoyancy correction model was introduced by
Shirakawa et al. (2001) for multi-liquid systems. The surface-tension
and buoyancy-correction models were further improved by Kim et al.
(2014). There have also been developments with SPH to solve multiple-
liquid interactions (e.g., Shadloo and Yildiz, 2011). In this paper, a
newly developed MPS method for multi-liquid systems with more
robust algorithms, including interface searching, buoyancy correction,
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and surface tension models, is applied to investigate interfacial
interactions and instability phenomena.

The newly developed MPS method for multi-liquid systems is first
applied to a three-liquid-sloshing problem using forced oscillations of a
rectangular tank at various frequencies. Using the Fourier transform,
the measured interface elevations at the left wall of the tank were
transferred to the frequency domain to obtain the response amplitude
operator (RAO). The calculated free-surface and interface time his-
tories and the RAOs for various oscillation frequencies and the
experimental data of Molin et al. (2012) matched well. In both the
multi-phase sloshing experiment and the presented simulations, saw-
tooth-shaped small-scale interfacial waves were observed, which are
related to the Kelvin—Helmholtz instability (KHI). The KHI is one form
of interface instability phenomena in multi-phase flows. Barnea and
Taitel (1993) studied KHIs for viscous and inviscid flows to find the
criteria for KHI generation. Funada and Joseph (2001) investigated
KHIs in a channel flow using a viscous potential flow analysis. Roediger
et al. (2011) experimentally and numerically studied KHIs in gas
sloshing. Scardovelli and Zaleski (1999) introduced a simulation of
KHIs with multiple fixed-grid methods, including VOF, marker-and-
cell (MAC), and level-set. Poiseulli's flow with interfacial KHIs of multi-
phase fluids was investigated by Shakibaeinia and Jin (2012). Price
(2008) and Shadloo and Yildiz (2011) further investigated the corre-
sponding KHIs using SPH methods.

Here, the newly developed multi-phase MPS method is applied to
simulate KHIs for the Poiseulli's flow case with two different fluids
flowing in opposite directions. In this case, saw-tooth-shaped inter-
facial disturbances are generated due to the KHI, and either they grow
further with strong roll-up motions or the growth is limited without
roll-up, depending on the given fluid properties and conditions. In
particular, the roles of the Richardson number (Ri), surface tension,
and viscosity for the growth or limitation of the KHI are extensively
investigated for various combinations of two-fluid properties.

2. Moving particle simulation
2.1. Governing equations
The continuity and Navier—Stoke's equations are employed as

governing equations to solve the incompressible viscous fluid dy-
namics.
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where p is the density of the fluid, u is the particle velocity, P is the
pressure, v is the kinematic viscosity, V is the gradient, ¢ is time, o is the
surface tension coefficient, « is the curvature of the interface, n is the
normal vector to the interface, and F includes other external forces
such as the gravitational force.

To simulate incompressible viscous flow, all terms of the differential
operators need to be replaced with particle interaction models, which
include gradient, divergence, and Laplacian models. Because the MPS
method is based on the Lagrangian approach, the effect of particle
interactions needs to be considered. Therefore, a kernel function,
which represents the effect of neighboring particles with respect to
their distance from the center particle, was suggested by Koshizuka and
Oka (1996). In this study, the following kernel function was employed:
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where r is the distance between the particles and , is the effective range
of the particle interaction. According to Eq. (3), if the particle distance,
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r, exceeds the effective range, the value of the kernel function becomes
zero. In this study, the effective range was set to 2.1 x [,, where [, is the
initial particle distance.

2.2. Divergence, gradient, and Laplacian terms

To solve the governing equations, all differential operators, includ-
ing the gradient, divergence, and Laplacian, need to be replaced with
particle interaction models.

The divergence model represents the divergence of a physical
quantity between two particles and is expressed as follows:
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The local weighted average of the gradient vectors between the

center and neighboring particles can be represented by the gradient
model. The gradient model can be expressed as follows:
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The Laplacian model, which represents the diffusion of a fluid, can
be expressed as
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where () denotes the particle interaction model, ¢ is an arbitrary value
for a physical quantity, d is the number of dimensions, 7 is the position
vector of a particle, and n° is the initial particle number density.

The symbol 4 in Eq. (6) is a parameter to ensure that the increase in
the variance measured by the distribution of the particles is equal to the
increase in the variance from the unsteady diffusion equation. The
Laplacian model is used to calculate the viscous effects. It is measured
from the viscosity of the center particle, which means that the
weighted/averaged viscosity of the neighboring particles inside the
effective radius is used. The parameter, 1, can be obtained from the
following equation:

zi#g?—
Zﬁelw(lr -7

T Pw(T - 7D
A=

@)

The particle number density can be calculated using a summation
of the kernel function for particle i/, shown in Eq. (5), which
corresponds to the density of the fluid.

ni= Y wlz =7
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Since particle number density is the summation of neighboring
particle with respect to kernel function, no special treatment is
necessary even if particles are moved from original media zone to the
different media zone. The density of each particle is applied for the

calculation of pressure gradient.
2.3. Incompressibility algorithm

The incompressibility model in the MPS method is an adopting
algorithm similar to the simplified marker-and-cell (SMAC) method in
a grid-based CFD system. It consists of two stages, explicit and implicit.
In the explicit stage, the intermediate velocity and position of the
particle are predicted from the viscous and gravitational forces. In the
MPS method, the particle number density is used as the density of the
fluid and can be varied by the re-arrangement of the particles with the
intermediate velocity. This changed particle number density may
violate the continuity equation, which is one of the governing equa-
tions; therefore, an adjustment in the particle arrangement is required
to satisfy the governing equations. This problem can be solved by
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