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A B S T R A C T

Concerns regarding the influence of the marine environment, such as surface currents and winds, on
autonomous marine vehicles have been raised in recent years. A number of researchers have been working
on the development of intelligent path planning algorithms to minimise the negative effects of environmental
influences, however most of this work focuses on the platform of autonomous underwater vehicles (AUVs) with
very little work on unmanned surface vehicles (USVs). This paper presents a novel multi-layered fast marching
(MFM) method developed to generate practical trajectories for USVs when operating in a dynamic environment.
This method constructs a synthetic environment framework, which incorporates the information of planning
space and surface currents. In terms of the planning space, there are repelling and attracting forces, which are
evaluated using an attractive/repulsive vector field construction process. The influence of surface currents is
weighted against the obstacles in the planning space using a 4-regime risk strategy. A trajectory is then
calculated using the anisotropic fast marching method. The complete algorithm has been tested and validated
using simulated surface currents, and the performance of generated trajectories have been evaluated in terms of
different optimisation criteria, such as the distance and energy consumption.

1. Introduction

Unmanned surface vehicles (USVs) can be used in various marine
applications. When operating individually, USVs can be deployed in
pollutant tracking missions (Xu et al., 2006) as well as environmental
and hydrographic surveys (Caccia et al., 2005). In addition, when
collaborating with autonomous underwater vehicles (AUVs), a USV can
be used as the mother ship to monitor a mission (Alves et al., 2006) and
as a platform for the launch and recovery of AUVs (Ferreira et al.,
2006). To successfully complete such missions, it is necessary to
improve reliability and autonomy of the USV.

Path planning is a critical part in the USV’s development, with the
aim of using the algorithm to determine the optimal trajectory to guide
the USV’s voyage. It not only determines the level of autonomy of the
vehicle, but it is also the premise of the reliability of a mission and the
likelihood of success (Statheros et al., 2008). When developing the
algorithm, factors such as the total path distance as well as safety are
main concerns (LaValle, 2006). In addition, the quality of the
generated trajectory, such as smoothness and continuity, also needs
to be taken into account (Smierzchalski, 1999). Path planning algo-
rithms can be generally divided into two categories: the pre-generative
approach (path generated prior to launching the USV), such as Chen

et al. (1995), and the reactive approach (path generated while the
vehicle is en route), such as Kamon and Rivlin (1995), which is
regarded as the ‘dynamic path planning approach’. To calculate the
path, different computational methods can be applied such as genetic
algorithms (GAs), graph search techniques and artificial potential field
methods amongst others.

GAs generate a population of possible paths which are evolved
iteratively, using genetic operators (such as the mutation and cross-
over) (Goldberg, 1989) to pursue optimal results. However, drawbacks
to GAs include a lack of convergence, which means the generated path
may be suboptimal, as well as a lack of consistency, which makes the
vehicle’s trajectories difficult to track.

Compared with GAs, graph search techniques such as A* and
Dijkstra’s methods have better consistency and convergence because
they use a discretised representation of the environment, known as a
grid map. However, as a result of the non-holonomic constraint of the
vehicles, a further path smoothing procedure is needed (Petres et al.,
2007). Moreover, the computational time can be potentially high. The
computational time is proportional to the number of grid points on the
map, which is in turn dependent on the resolution of the graph (finer or
coarser). Rapidly exploring random tree (RRT) approaches introduced
by LaValle (1998) do not need to explicitly set any resolution
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parameters so the RRT method has the ability to explore the environ-
ment space quickly and uniformly using a random sampling scheme.
However, the RRT approach is not suitable in the scenario of dynamic
path planning as they are incapable of providing a global optimal
solution with the least distance cost (Lolla et al., 2014).

Potential field algorithms search the path by constructing an
artificial potential field (APF) to weigh the influences of obstacles and
goal points (Andrews, 1983; Khatib, 1986). These algorithms are
computationally efficient, but are susceptible to the local minima
problem (the vehicle can be trapped in a U-shaped obstacle)
(Andrews, 1983). To address the defect of these algorithms, Wu et al.
(2015) have proposed a modified APF method to improve the
performance of path planning. The local minima problem has been
addressed by integrating a wall-following method, which enables the
vehicle to move away from the ‘trapped’ point by following the edge of
the obstacle. In addition, a combinatorial strategy has been proposed
by combining the APF with the ant colony optimisation (ACO). The
ACO is utilised for global path planning with the generated path being
used as the primary guidance route. When the vehicle encounters a
moving obstacle, or experiences a change of the environment, the APF
will be used as a local path planner to modify the path and avoid
collisions. However, such an algorithm may increase the computational
burden because additional algorithms are added. An alternative is to
create the potential field which has no local minima. Garrido et al.
(2008) therefore applies the fast marching (FM) method to construct
such a field by simulating electromagnet wave propagation. The wave
starts from the mission start point and continues to iterate until
reaching the end point. The generated field will only have one global
minima point which is located at the start point with the potential value
being 0.

It should be noted that the majority of the aforementioned studies
focus on generating a collision free path but ignore environmental
impact on the vehicles. The marine environment is an uncertain,
complex and volatile space which impacts path planning as evidenced
from experiments carried out by Song (2014) when a discrepancy
caused by surface currents was found to exist between a planned path

and the actual trajectory track taken by a USV. Such discrepancy can
jeopardise marine vehicles’ missions, especially when vehicles have
limited operating speed and relatively small dimensions and displace-
ments. It is therefore very important to consider the influences of
environmental factors when developing the path planning algorithms
for marine vehicles.

Agarwal and Lermusiaux (2011) used the level set method to solve
the environmental influence problem for AUV path planning. Petres
et al. (2005) used the anisotropic fast marching (AFM) method to
address similar problems but in an environment where relatively
stronger currents exist. The AFM is an improved version of the FM
method with higher computational efficiency than the level set method
(Agarwal and Lermusiaux, 2011). Also, the optimal collision free path
generated by the AFM is able to provide the guaranteed convergence,
which has been intuitively explained in Konukoglu et al. (2007) and
mathematically proven in Mirebeau (2014). However, these studies
have only been applied on AUV platforms, where only the constraints
of deep ocean currents and collision avoidance (limited distance to the
obstacles) are considered. For surface vehicle navigation, additional
constraints such as wind, tidal currents and traffic regulations such as
COLREGs also need to be considered, for which the conventional AFM
cannot implement.

To address the shortcomings, an improved AFM named as the multi
layered fast marching (MFM) method has been proposed with initial
work presented in Song et al. (2015). However, the improved AFM only
considers a time-invariant environment with no surface currents
changes. Additionally, an obstacle’s impact on the USV is assumed to
be uniform regardless of location changes. In this paper the framework
has been improved by adding a geometrical analysis to assist with
minimising the negative effects from both physical obstacles (coastal
lines and islands) and environmental factors, such as currents and
wind. An attractive/repulsive vector field construction process, a 4-
regime risk strategy and two operation handlers have been developed
to process and evaluate the environmental conditions. These modifica-
tions make important improvements to the method with the main focus
being on generating a feasible trajectory in the presence of dynamic

Nomenclature

Roman symbols

A a matrix that determines the strength of the simulated
currents data

AR anisotropic ratio
C a constant equalling to ρ c/
c the nominal speed of the USV
Cfree collision-free space
Cobs obstacle space
C-space configuration space
Datt, Drep attractive and repulsive potential fields
Dcum the length of ith path segment
di the length of ith path segment
dSA the minimum distance that the USV should keep away

from the obstacle
ep⃗ the unit vector of USV heading at p⎯→

Fatt, Frep attractive and repulsive vector fields
Fbase base layer vector field
Fenv environment layer vector field
Fsyn synthetic vector field
h step size
J the integration of the relative velocity of USV to the

surface currents

M
⎯→

intersection point of the optimal path and p p⎯→⎯→
i j

min_Obs the minimum distance to the obstacles

n⎯→ local ellipse direction
p⎯→ grid point position
p p⎯→, ⎯→

i j neighbouring points of p⎯→

p⎯→obs obstacles’ locations
p p⎯→ , ⎯→
start goal positions of start and goal points
r wave propagation speed along θ
Rβ ,β1 2 risk regime
ra, rb major and minor radii along the X and Y axes of the local

ellipse frame
r r⃗ ⃗,a b the major and minor axes of the local ellipse frame

t∆ time step
U p(⎯→) wave arrival time at p⎯→

u p( )p p
⎯ →⎯⎯

i j
⎯→⎯ ⎯→⎯ temporary cost at p⎯→

Vu, Vv two orthogonal components of currents vector field
W the total energy cost
Wi the power consumption at each position

Greek symbols

α propagation scale limit
β β,1 2 field weightings of Fenv and Fbase respectively
φ angle between n⎯→ and X axis
ρ the water density

⃗τ(p) wave propagation speed related to p⎯→

τ θ t(
⎯→

( )) wave propagation speed related to p⎯→ and orientation

θ t
⎯→

( ) cost/speed vector
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