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a b s t r a c t

Traditional radionuclide identification algorithm based on peak detection cannot recognize radioactive
material in a short time. This study proposes a rapid radionuclide identification algorithm based on
the discrete cosine transform and error back propagation neural network. Detection rate and accurate
radionuclide identification distance were used to evaluate the proposed method. Experimental results
show that the extracted feature vector of the spectrum is not influenced by time, activity, and distance.
The proposed algorithm obtained better results in a relatively authentic environment, and it has the abil-
ity to predict the isotopic compositions of the mixed spectrum. The proposed method has a better iden-
tification performance for the spectrum of radionuclide masked by shielding material except the gamma
rays emitted by related radionuclide are significantly shielded. It is also particularly recommended for the
fast radionuclide identification of spectroscopic radiation portal monitors, radioisotope identification
devices, and other radiation monitoring instruments.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Radiation monitors are operated at checkpoints (e.g., borders
and seaports) to detect and identify radioactive materials in a short
time, as well as combat the illegal transportation of radionuclides
(Bobin et al., 2016). However, no evident peaks in the gamma spec-
trum are observed during this short period. Difficulties can arise
when the traditional method is used for fast radionuclide identifi-
cation in this condition.

Artificial neural networks (ANNs) are mathematical models that
emulate several of the observed properties of biological nervous
systems and draw on the analogies of adaptive biological learning
(Kangas et al., 2008). ANNs have been applied in gamma-ray spec-
trometry analysis (Medhat, 2012; Dragović and Onjia, 2005;
Dragović et al., 2005; Dragović et al., 2006). Feature extraction is
the kernel step of pattern recognition. Several previous studies
have examined aspects of this topic in recent years. For example,
Pilato et al. (1999) developed a new method for activity measure-
ment by extracting the principal components of the gamma spec-
trum by singular value decomposition. However, the said

researchers did not utilize it for radionuclide identification. Chen
and Wei (2009) proposed a radionuclide identification method
based on the Karhunen–Loeve transform (KLT) and neural network
(NN), but the measuring time was approximately 1 min. Contrary
to the traditional method, calibration, peak detection, and decon-
volution are not required when utilizing NNs to analyze the
gamma spectrum.

The present study proposes a novel rapid radionuclide identifi-
cation algorithm based on the discrete cosine transform (DCT) and
error back propagation (BP) NN. Experiments on different source
types, time, activities, distances, number of radionuclide, and
gamma-ray shielding were performed to verify the radionuclide
identification performance of the proposed method.

2. Methods and experiments

The proposed algorithm is composed of background subtrac-
tion, feature extraction, and radionuclide identification. Fig. 1
shows the procedure of the proposed algorithm. First, the back-
ground and radionuclide spectra are both smoothed by wavelet
decomposition. The subtraction spectrum is then obtained by
subtracting the portion of the smoothed background spectrum
according to the ratio of the radionuclide scan time to the back-
ground scan time. Second, the DCT is performed on the subtraction
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spectrum to obtain the transformed spectrum. A certain number of
transform coefficients is selected as the feature vector in the trans-
formed spectrum. Finally, the normalized feature vector is inputted
into the NN, and the trained NN is applied to predict the isotopic
compositions of the spectrum.

2.1. Feature extraction

DCT is an orthogonal transformation method (Ahmed et al.,
1974), and its transform kernel is a cosine function as shown in
Eq. (1). It is often considered as the optimized transform of the
speech and image signals, and its transform kernel is changeless,
which only depends on the dimensions of data. The signal of trans-
formed spectrum is mainly concentrated in the low frequency
region, which provides a new way for feature extraction. DCT is a
promising method for transforming the gamma spectrum. The
spectrum can be seen as a vector y with the dimension of N, and
then y(x) (x = 0, 1, 2, 3 . . . N � 1) is a form of discrete signal of the
spectrum. Therefore, the spectrum can be expressed as Eq. (2) after
DCT. Given that the signal of the Y(u) spectrum is mainly concen-
trated in the low frequency region, more than 90% energy of the
original spectrum can be reserved by selecting a small amount of
transform coefficients in that region. The selected transform coef-
ficients can be seen as spectrum features and are adopted as inputs
for the NN. Thus,
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where u is an integer, that is, in the range of 0 to N � 1.
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2.2. BPNN model

The BPNN is a multilayer feedforward NN that is trained by the
BP algorithm. It is composed of input, hidden, and output layers
(Yoshida et al., 2002). Each layer includes neurons that are con-
nected to all the neurons of the succeeding layer. Weight,wij, exists
for each connection between the two neurons, i and j. The neuron
sums up all the signals it receives; each signal is multiplied by its
associated weights on the connection, and the sum of the weights
is processed with a certain activation function. This process
describes the signal transmission in the NN. The initial weights
of ANNs are often selected randomly by an algorithm, which can
cause errors between the output and the target (actual). The BP
algorithm works by minimizing the error through propagating it
back into the network. The weights on each of the connections
between the neurons are changed according to the error size. The

training is stopped when the root mean square error (RMSE)
reaches an acceptable value. For machine learning, the key step
is feature extraction, which can be completed by feature transform
(e.g., KLT, DCT, singular value decomposition (SVD), fast fourier
transform (FFT), etc.). BPNN may have better performance if we
can extract the main feature of spectrum.

In the present study, 128 transform coefficients were selected
as feature vectors of the spectrum; thus, the number of input neu-
rons is 128. The number of hidden neurons is set at 8 according to
the empirical Eq. (3). 238Pu, 131I, 60Co, and 137Cs are used to verify
the proposed method, thus, the number of output neurons is 4.
Each output indicates whether a radionuclide exists in the environ-
ment or not. Fig. 2 shows the BPNN model used.

k ¼ log2m ð3Þ
where m is the number of input neurons, and k is the number of
hidden neurons.

2.3. Performance evaluation of the proposed method

In order to evaluate the proposed method, gamma ray spec-
trometry system which consists of 300 � 300 NaI (Tl) detector (ORTEC
Inc.) coupled with a PC-based multichannel analyzer (MCA)
(ORTEC Inc.) along with MAESTRO software installed in the PC
was used, and MAESTRO 7.01 (ORTEC Inc.) software was used to
obtain the spectra. The energy of this detector ranges from
30 keV to 3000 keV, and the resolution is approximately 7.7% (at
662 keV). The detector was installed at a fixed location, and the
radionuclides were placed at points A, B,. . ., I in 20-cm intervals
as shown in Fig. 3. Samples with different times, activities, and dis-
tances were obtained. The background spectrum without any
source was collected for 300 s to generate the background tem-
plate. Table 1 lists the radionuclides utilized in the experiment.
They are labeled as Nucl-1, Nucl-2, Nucl-3, Nucl-4, Nucl-5, Nucl-
6, Nucl-7, and Nucl-8 for convenience of description. The net count
of each radionuclide measured at point A (Fig. 3) with detection
time of 10 s was given, and the count of background with detection
time of 10 s was also given. The dose rate of background without
adding shielding apparatus was measured in the laboratory (about
0.1 lSv/h).

The detection rate was used to evaluate the identification per-
formance of the proposed algorithm. The detection rate is defined
by the ratio of the correctly identified data to the total amount of
data as shown in Eq. (4) (Min et al., 2012):

Detection rateð%Þ ¼ TP þ TN
TP þ TN þ FP þ FN

� 100 ð4Þ

where TP is true positive, TN is true negative, FP is false positive, and
FN is false negative.

The accurate radionuclide identification distance (ARID) of each
radionuclide was calculated from the detection rate results with

Fig. 1. Block diagram of the proposed algorithm.
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