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The aim of this work is to investigate the stability of linear fractional-space neutron point kinetics
(F-SNPK) models for nuclear reactor dynamics, using three methods: root locus, Bode plot and unit step
response. The F-SNPK is based on an approximation non-Fickian that is modeled considering that the
differential operator of neutron density current is of fractional order, known as anomalous diffusion

exponent. Two rector geometries for different values of anomalous diffusion exponent where analyzed.
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The results obtained with F-SNPK were compared with the classical neutron point kinetic (CNPK)
equations. It has been found that the F-SNPK models are open-loop as well as closed-loop stable for both
the geometries. The models are also found to exhibit faster dynamics with increase in subdiffusivity.
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1. Introduction

The fractional-space neutron point kinetic (FNPK) approxima-
tion developed by Espinosa-Paredes (2017) is the fractional order
(FO), which for one-group of neutron delayed precursors, is given
by:

%:{W—ﬁu f(oc)}n(t)ﬂc(t), foro<o<i (1)

dt A FO term.

where the precursor concentration is given by:

de(t) _ B

BT Kn(t) — Jc(t) (2)

The initial conditions are given by:

n(0) = ng 3)
_ B
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with

p(0) = —A f() (5)
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In these equations n(t) is the neutron density; p is the reactiv-
ity; B is the total fraction of delayed neutrons; A is one generation
average lifetime of instantaneous neutrons; / is the decay constant
of the delayed neutron precursor; c(t) is the delayed neutron.

Eq. (1) has a new term respect to classical neutron point kinetics

(CNPK), which represent the anomalous diffusion source
(Espinosa-Paredes, 2017):
f(@) = v(D,B: — Dy, B}, (6)

where v is the neutron speed, D, is the neutron diffusion coefficient,
D,, is the fractional diffusion coefficient whose units are cm®, B, is
the geometric buckling, « is the order of the differential operator
known as the anomalous diffusion coefficient: for sub-diffusion
process: 0 < a<1; while for the super-diffusion process:
1 < o < 2. The concept of fractional divergence has also been dis-
cussed in (Das and Biswas, 2007).

Recently, there have been attempts (see, Espinosa-Paredes et al.,
2013; Vyawahare and Nataraj, 2013a,b; Espinosa-Paredes, 2017) to
model neutron transport in a nuclear reactor as anomalous diffu-
sion, particularly, sub-diffusion (slow diffusion). The movement
of neutrons inside a nuclear reactor core is not a simple diffusion
process. The neutrons undergoing movements are captured for fis-
sion reactions, neutron capture, etc. These processes which capture
neutrons can be treated as local traps with non-zero waiting times
and hence the neutron transport can be modeled as sub-diffusion.
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The sub-diffusion of neutrons can be efficiently modeled using
fractional-order neutron telegraph equations involving the time
and or space derivatives of non-integer order. Consequently, the
higher dynamic models of nuclear reactor which are based on
the fundamental neutron movement equations are also of frac-
tional order (for example, the fractional-order neutron point
kinetic model). Thus, the sub-diffusive nature of neutron transport
appears in terms of fractional-order differential equations in all
type of reactors (viz. BWR, PWR, PHWR, etc). Also see (Moreno,
2010, Henrice Jr., et al., 2017). The solution of coupled FO diffusion
equations has been presented in (Sardar et al., 2010). The numeri-
cal solution of neutron FO diffusion equation has been discussed in
previous works (Moghaddam et al., 2014, 2015a-c).

The anomalous diffusion source contains two terms: the first
term is of integer order (IO term), and the second term is the
fractional order (FO term), as can be seen in this equation. The 10
term is due to normal diffusion whose approximation is
szp},(r, t) = —ngsv(r, t) (Glasstone and Sesonske, 1981), while the
FO term is due to anomalous diffusion, i.e. V"*'d),j,(r, t) =

—B} ", (x,1).

The anomalous diffusion process can be introduced in normal
neutron diffusion theory considering Non-Fickian approximation
with a fractional constitutive equation of the current density vec-
tor (Espinosa-Paredes et al., 2013):

J,(1,8) = =Dy (1) V¥, (1, 1), for 0 <o <1 (7)

where ¢, is the neutron flux en el medium y (Fig. 1), V* is the dif-
ferential operator of fractional order (FO), which involves fractional-
order derivatives (,D*). The divergence of the current vector (Eq.
(6)) is:

V-J,(,t) = —Dy()V* ¢, (r,t), for 0 <o <1 (8)

The fractional-order derivative ¢D* can be defined in different
ways from fractional calculus deals with the derivatives and inte-
grals of non-integer, real or complex-order. The field is as old as
the conventional calculus, originated in 1695. Riemann-Liouville
defined the fractional differential as follows (Das, 2011):
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Caputo formulated the fractional differentials as follows:

N * ¢™(7)
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for(m—-1)<a<m

(10
Griinwald-Letnikov formulated the fractional derivatives as

Y
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In these equations m is the integer and « is a positive real num-
ber. Although the formation of Eqgs. (9) to (11) are different;
Podlubny (1999) proved that they are equivalent.
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Fig. 1. Open-loop configuration.

The quantity DW/B;c+1 has the dimensions of (length)™', since Dy,
is a (length)” and B;™" is a (length)"**". Then, the quantities D,B;

and DWB;‘“, are consistent in dimensions. The geometric buckling

o+1

of fractional order (Bg“) can be obtained of the solutions of normal
diffusion (integer order), for different reactor geometries.

Now, when o — 1 the F-SNPK given by Eq. (1), lead to the clas-
sical neutron point kinetics (CNPK) equations.

%:pTﬁn(t)qtic(t). (12)
In this work we investigate the stability of F-SNPK equations for
nuclear reactor dynamics, using frequency domain method given
by Eq. (1). Two rector geometries for different values of
fractional-order derivative where analyzed. The results obtained
with F-SNPK (Eq. (1)) are compared with the CNPK (Eq. (12)).
The salient contributions of this work can be listed as follows:

1. Development of novel linear F-SNPK model for 1-group delayed
neutrons.

2. Stability analysis of open- and closed-loop linear F-SNPK mod-
els using root locus, Bode plot and unit step response methods
(for slab and cylindrical geometries).

3. Detailed analysis of the time and frequency domain perfor-
mance indices of F-SNPK models and comparison with CNPK
model.

4. Study of effect of subdiffusion parameter « on the dynamics of
the F-SNPK models.

The paper is organized as follows. Next section gives the deriva-
tion of linear F-SNPK model. Section 3 briefly explains the stability
analysis tools employed in this work and tabulates the parameter
values considered. Stability analysis of open-loop CNPK and F-
SNPK models is given in Section 4. Closed-loop stability analysis
is discussed in detail in Section 5. Section 6 presents the conclusion.

2. Linear F-SNPK model

This section presents the development of linearized version of
F-SNPK model. The well-known method of small-signal analysis
is used to derive the linear model (Ogata, 1979; Khalil, 2002).
The linear model is particularly useful in understanding the behav-
ior of nuclear reactor for small changes in the input. The variation
in neutron concentration when the reactor is excited by small
changes in reactivity near the equilibrium condition is necessary
to understand the reactor dynamics. The developed linear model
is used to investigate the stability of the reactor.

The F-SNPK model is given by Eqgs. (1) and (2), which are non-
linear model. In order to linearize the model, the model is
expressed in terms of perturbation variables as follows. Assuming
Caputo fractional derivatives,

on=n-n’ (13)
oc=c—c (14)
p=p—p (15)

where n*, ¢ and p* represent the values of these variables at the
equilibrium condition.
Substituting in (1) and (2) gives

ptp =

d,. o
—(on+n") = A

i@ f@)|(on+n%) + idc+c) (16)

Neglecting small second order and higher order terms gives lin-
ear approximation of the above differential equation. The resulting
linear differential equation in deviation variables is:
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