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a b s t r a c t

In this work we present a methodology of solution of the multigroup multi-layer stationary neutron dif-
fusion equation in two-dimensional cartesian geometry. This eigenvalue problem describes the criticality
of nuclear reactor, that is, it establishes the ratio between the numbers of neutrons generated in succes-
sive fission reactions. In order to solve this problem, we use the power method to obtain the dominant
eigenvalue (Keff ) and its corresponding eigenfunction. Each iteration of the power method requires the
solution of a non–homogeneous diffusion problem, that usually is solved numerically, however in this
work the neutron diffusion equation is solved in analytical form in each iteration. To solve this system
of second order partial differential equations, we propose to use the Finite Fourier Transform in one of
the spatial variables obtaining a transformed problem which is resolved by well-established methods
for ordinary differential equations. After it is solved, we use the inverse Fourier Transform to reconstruct
the expression of the neutron flux in the original variables. However, at each iteration of the power
method it is necessary to update the source term with the neutron flux and the Keff of the previous iter-
ation. Thus in all iterations new terms are added which becomes the process very laborious. To overcome
this problem, the authors propose a methodology that approximates the neutron flux in standard form by
polynomial interpolation. In order to reduce computational time we propose to subdivide the real regions
of the problem into small fictitious regions. In this way, the interpolating polynomials of each region can
be of low order, reducing the dimensions of the matrices involved and, consequently, computational
time. The methodology is implemented to solve a heterogeneous problem and the numerical results
are compared with the finite volumes method.

� 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the years, many methods to predict the neutron flux in a
nuclear reactor have been developed. The most precise way to
get the neutron flux is solving the neutron transport equation.
However this equation is usually difficult to solve and it takes
too much (computational) time to achieve results even with the
current computation speeds. Therefore, certain approximations
based on Fick’s law are made to obtain the neutron flux, one of
the classic approximations is the neutron diffusion equation
(Sekimoto, 2007). This equation is used because it produces good
results and has low computational cost compared to transport
equation.

The steady state neutron diffusion equation is an eigenvalue
problem, where only the dominant eigenvalue and its respective
eigenfunction have physical meaning for the problems of interest.
These calculations are important because they represent the neu-
tron flux distribution for most of time dependent problems. In
other words, the usual initial conditions for these initial value
problems are the result from the neutron diffusion eigenvalue
problem. The dominant eigenvalue is called the effective multipli-
cation factor (Keff ), and it represents the ratio between neutron
production (by fission) and loss from one generation to another.
Also, the power method is the most used method to obtain the
dominant eigenvalue and its eigenfunction (Duderstadt and
Hamilton, 1976; Sekimoto, 2007).

Usually, the neutron diffusion equation is solved by numerical
methods. Frequently these methods are based on dividing the
domain into a mesh of points or nodes (spacial discretization tech-
nique) (Maiani and Montagnini, 2004; Rokrok et al., 2012; Bernal
et al., 2014; Welch et al., 2017).

The analytical methods are less common in the literature, but
not least important, since they provide extremely important
benchmarks problems for the licensing and operation of the
nuclear power plants. Usually an integral transform is applied to
the set of equation, for example, Laplace Transform Technique
(Lemos et al., 2008). More recently, a power series expansion
was used (Ceolin et al., 2015).

In this article, we present the Fictitious Borders Power Method
(FBPM). FBPMworks for multigroup multi-layer stationary neutron
diffusion equation in two-dimensional cartesian geometry. This
method consists in dividing the domain into even smaller regions
(fictitious regions). The neutron diffusion equation is solved via
the power method for each fictitious region. However, for each
iteration of the power method these equations are solved

analytically using Fourier Transform method. The neutron fluxes
are reconstructed by polynomial interpolation in each iteration
to calculate the fictitious source term for the power method.
Where the main advantages of this methodology are an analytical
solution for each fictitious regions and a low time scale to obtain
the numerical results.

2. Mathematical formulation

The multilayer multigroup two-dimensional neutron diffusion
equation without external source and homogeneous nuclear
parameters by regions writes:

�DðrÞ
g r2/ðrÞ

g þ RðrÞ
Rg/

ðrÞ
g ¼ Q ðrÞ

g ; ð1Þ

where g ¼ 1; . . . ;G are neutron energy groups,
/ðrÞ

g ¼ /ðrÞ
g ðx; yÞ;0 6 x 6 L1;0 6 y 6 L2 and Q ðrÞ

g is source term
that contains the fission and scattering terms given by:

Q ðrÞ
g ¼ 1

Keff
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fg0/
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XG
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g0–g
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sg0g/
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The notations in Eqs. (1) and (2) are: r are the regions of prob-
lem, according to Fig. 1; DðrÞ

g is the diffusion coefficient of the

energy group g in region r;/ðrÞ
g ðx; yÞ is the neutron scalar flux of

the energy group g in region r;RðrÞ
Rg is the removal cross section of

the energy group g in region r; Keff is the effective multiplication
factor; vg is the integrated fission spectrum of the energy group
g; mg is the average number of neutrons emitted by fission of the

energy group g;RðrÞ
fg is the fission cross section of the energy group

g in region r;RðrÞ
sg0g is the scattering cross section from energy group

g0 to g in region r.
To simplify the manipulations, it is convenient to rewrite the

eigenvalue problem (1) and (2) into a matrix system in the follow-
ing form:

MU ¼ 1
Keff

FU; ð3Þ

where the vector of the group neutron flux is

U ¼ /1 /2 � � � /G½ � T , the coefficient matrix M ¼ aij
� �

G;G is

defined as:

aij ¼ �Dir2 þ RRi; i ¼ j

�Rsj0 i; i– j

(
ð4Þ

and the coefficient matrix F ¼ bij
� �

G;G is defined as:

bij ¼ vimjRfj:

In this work we consider a rectangular geometry with boundary
conditions:
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þ b1g

@/g

@x

����
@Cx;0

¼ 0;

a2g/g j@C0;y
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@/g
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����
@C0;y
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þ b3g

@/g

@x

����
@Cx;L2

¼ 0;

a4g/g j@CL1 ;y
þ b4g

@/g

@y

����
@CL1 ;y

¼ 0;

ð5Þ

where a and b are constants and jaj þ jbj > 0. Also, the flux and cur-
rent in x and y directions continuities are valid in the whole domain,Fig. 1. Example of a multilayer two-dimensional problem in cartesian geometry.
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