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a b s t r a c t

The Loading Pattern Optimization (LPO) of a Nuclear Power Plant (NPP), or in-core fuel management opti-
mization, is a real-world and prominent problem in Nuclear Engineering with the goal of finding an opti-
mal (or near-optimal) Loading Pattern (LP), in terms of energy production, within adequate safety
margins. Most of the reactor models used in the LPO problem are particular cases, such as research or
power reactors with technical data that cannot be made available for several reasons, which makes
the reproducibility of tests unattainable. In the present article we report the results of LPO of problems
based upon reactor physics benchmarks. Since such data are well-known and widely available in the lit-
erature, it is possible to reproduce tests for comparison of techniques. We performed the LPO with the
data of the benchmarks IAEA-3D and BIBLIS-2D. The Reactor Physics code RECNOD, which was used in
previous works for the optimization of Angra 1 NPP in Brazil, was also used for further comparison.
Four Optimization Metaheuristics (OMHs) were applied to those problems: Particle Swarm
Optimization (PSO), Cross-Entropy algorithm (CE), Artificial Bee Colony (ABC) and Population-Based
Incremental Learning (PBIL). For IAEA-3D, the best algorithm was the ABC. For BIBLIS-2D, PBIL was the
best OMH. For Angra 1 / RECNOD optimization problem, PBIL, ABC and CE were the best OMHs.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Loading Pattern Optimization (LPO) or the In-Core Fuel Manage-
ment Optimization is a prominent problem in Nuclear Engineering.
The goal of the LPO problem is determining an optimal (or near-
optimal) Loading Pattern (LP), according to objectives such as max-
imizing cycle length, maximizing keff, minimizing power peaking
factor, etc., in a Nuclear Power Plant (NPP) for producing power
with adequate safety margins (see Levine (1987)). As Stevens
et al. (1995) describe, the LPO problem is highly complex, with a
large number of feasible solutions, a large number of sub-optimal
solutions, disconnected feasible regions, high dimensionality, com-
plex and time-consuming evaluation of candidate solutions that
uses Reactor Physics codes.

Researchers have tackled LPO problem with manual optimiza-
tion, Mathematical Programming (e.g., Wall and Fenech, 1965;
Tabak, 1968), Knowledge Based Systems (e.g., Naft and Sesonske,
1972), and Optimization Metaheuristics (OMHs), which

encompass, for example, Simulated Annealing (SA; e.g., Parks,
1990; Kropaczek and Turinsky, 1991; Stevens et al., 1995), Genetic
Algorithms (GAs; e.g., Poon and Parks, 1992; Chapot et al., 1999),
Ant Colony Optimization (ACO; e.g., Machado and Schirru, 2002;
De Lima et al., 2008), Tabu Search (TS; e.g., Lin et al., 1998; Hill
and Parks, 2015), and others.

Notwithstanding the efforts for comparing such a great variety
of algorithms and techniques, usually the reproducibility of com-
putational experiments is impaired due either to specificities such
as different operation cycles, reactors concepts and designs, or
even the access to nuclear data of real-world NPPs.

In order to obtain a fair comparison between techniques it is
also necessary to keep in mind that the same search algorithm
can achieve good results in some problems however a poor perfor-
mance in others. According to Wolpert and Macready (1997),
which derived No Free Lunch theorems for optimization, the com-
parison of algorithms is endangered by their application on a small
sample of problems.

In order to avoid possible misleading results obtained in com-
parisons, several areas have developed common databases for
benchmarking test problems and instances. For example, the
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TSPLib (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/)
gathers data for the Traveling Salesman Problem; the QAPLib
(http://anjos.mgi.polymtl.ca/qaplib/) gathers data for the Quadra-
tic Assignment Problem; and Solomon (1988) developed a
data set for the Vehicle Routing Problem with Time Windows
(http://w.cba.neu.edu/~msolomon/problems.htm).

A similar repository is not found yet for LPO, but nuclear reactor
applications have a great advantage in this sense. In our research
field, several Reactor Physics benchmarks have been used for vali-
dating code implementations and are reported in publications (e.g.
Argonne National Laboratory, 1977; Poursalehi et al., 2013a;
Hosseini and Saadatian-Derakhshandeh, 2015). For another exam-
ple of the use of benchmark data, Poursalehi et al. (2013b) devel-
oped the Discrete Firefly Algorithm Nodal Expansion Code with
application to two reference test cases for maximizing keff and min-
imizing the power peaking factor, including the BIBLIS benchmark,
also used in the present work.

Although the current use of Reactor Physics benchmarks is not
directly related to the shuffling of FAs for obtaining an optimal (or
near-optimal) solution, our proposal in the present work is the
usage of benchmark data for optimization purposes, aiming at
the reproducibility of experiments in LPO research, and comparing
OMHs.

In this sense, in the present article we report the application of
four OMHs, namely Particle Swarm Optimization (PSO; Eberhart
and Kennedy, 1995; Kennedy and Eberhart, 2001), Cross-Entropy
algorithm (CE; Rubinstein, 1999; Rubinstein and Kroese, 2004),
Artificial Bee Colony (ABC; Karaboga, 2005), and Population-
Based Incremental Learning (PBIL; Baluja, 1994) to LP optimization
problems based on the reactor physics benchmarks IAEA-3D
(Argonne National Laboratory, 1977) and BIBLIS-2D (Poursalehi
et al., 2013a), using the PARCS code (Purdue Advanced Reactor
Core Simulator; Joo et al., 1998). For further comparison with pre-
vious works we also report the results of those OMHs to the 7th
cycle of Angra 1 NPP PWR using the RECNOD code (Chapot et al.,
1999; Chapot, 2000).

The remaining of the present article is organized as follows. Sec-
tion 2 reviews the related works; Section 3 presents the theoretical
background; themethodology is described in Section 4; in Section 5
we discuss the results; and finally, concluding remarks are made in
Section 6.

2. Related works

Meneses et al. (2009) implemented the PSO with the Random
Keys (RK; Bean, 1994) model to the LPO of a PWR, particularly
the 7th cycle of Angra 1 NPP, with the reactor physics code
RECNOD. PSO compared favorably in relation to the best result of
GA described by Chapot et al. (1999) in 4000 evaluations. In rela-
tion to the PBIL algorithm implemented by Machado (2005), in five
out of fifteen tests PSO performed better. PSO with RK has also
been used with heuristics reducing the number of evaluations
and therefore the computational cost of the optimization
(Meneses et al., 2010a), but the results were not improved in com-
parison to the PSO with RK by Meneses et al. (2009). All those com-
parisons only were possible because the evaluations were made
under the same conditions, that is, using the same nuclear data,
for the same fuel cycle.

Babazadeh et al. (2009) developed a discrete PSO for application
to the LP optimization of a VVER PWR using theWIMSD5B (Aldama
and Trkov, 2000) and CITATION, comparing the results using two
methods: the first with the objectives Pr and keff aggregated in a lin-
ear fitness function, and the second method with a Vector Evalu-
ated PSO (VEPSO) for the objectives Pr and keff. Khoshahval et al.

(2010) developed a PSO algorithm for application to the Bushehr
NPP, for the LPO of a VVER PWR, comparing the results to a
designer, Hopfield with SA, and GA.

Schlünz et al. (2014) used a Multi-Objective (MO) CE algorithm
for the optimization of the SAFARI-1 research reactor. A compar-
ison of CE method to other MO algorithms within a unified
methodology for single objective and MO LPO was also proposed
(Schlünz et al., 2016). Meneses and Schirru (2015) applied the CE
method to the 7th cycle of Angra 1 PWR having the cycle length
as optimization criterion, with an aggregated fitness function.

Oliveira and Schirru (2011) applied the ABC algorithm with RK
to the LPO of Angra 1 NPP allowing the shuffling of elements in the
symmetry lines with elements between symmetry lines, compar-
ing with results of the GA and PSO also obtained with such
methodology. Safarzadeh et al. (2011) applied ABC for the power
flattening of a VVER-1000 core, comparing to GA and PSO.

Machado (2005) applied a MO PBIL to the LPO of Angra 1 NPP.
Caldas and Schirru (2008) implemented a parameter-free PBIL
(FPBIL) also for Angra 1 NPP. Quantum versions of the PBIL algo-
rithm were also implemented for Angra 1 NPP (Silva and Schirru,
2011, 2014).

Concerning the usage of reactor physics benchmarks for LPO,
Poursalehi et al. (2013b) applied the Discrete Firefly Algorithm
Nodal Expansion Code to the BIBLIS-2D data for maximizing keff
and minimizing the power peaking factor.

3. Theoretical background

3.1. Loading Pattern Optimization (LPO)

The LPO (or In-Core Fuel Management Optimization) is the opti-
mization problem with the goal of finding an optimal (or near-
optimal) LP, in terms of energy production, within adequate safety
margins (Levine, 1987). After the operation cycle it is necessary to
refuel the reactor, so that approximately one third or one quarter
of the FAs is replaced. Therefore the LP optimization problem con-
sists in finding an optimal (or near-optimal) combination of old
and fresh FAs according to optimization criteria subject to con-
straints. The interest reader is referred to Hill and Parks (2015)
and Meneses et al. (2010a), who review related works and several
concepts related to the LPO problem, including optimization crite-
ria (objective functions). In the next subsections the Reactor Phy-
sics benchmarks IAEA-3D and BIBLIS-2D are briefly described, as
well as the optimization of Angra 1 PWR, in Brazil.

3.1.1. IAEA 3D benchmark
The IAEA 3D reactor is one of the most commonly problems

used in computational simulations in the area of reactor physics,
in general, in order to evaluate the performance of neutron calcu-
lation methods. It is a problem modeled considering two energy
groups. This reactor consists of 177 fuel elements with a width of
20 cm, including 13 control rods. 9 bars are fully inserted and 4
bars are only partially inserted. The active core height is 340 cm.
The whole reactor core is surrounded by 64 reflector assemblies.
The reflectors located at the base and at the top are made up of
20 cm of water. The nuclear parameters that define each region
are presented in Table 1. The problem is treated considering ¼
symmetry, and two boundary conditions, namely, no incoming
current and zero net current are applied as shown in Fig. 1.

In our simulations the IAEA-3D core was modeled with an
1/8-symmetry and symmetry lines FAs are not swapped with off-
symmetry lines FAs. In this case, the total number of candidate
solutions (LPs) is C9,2 � C16,6 = 288288.
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