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a b s t r a c t

Compared to the two-fluid single-pressure model, the two-fluid seven-equation two-pressure model has
been proved to be well-posed (hyperbolic) due to its real characteristic values and exists a wide range of
physical and industrial applications. In this paper, the partial differential equation system of the two-
pressure model is discretized numerically using the finite volume integral method with staggered grids.
The semi-implicit scheme is implemented to achieve accurate and stable numerical results. The source
terms containing the heat and mass transfer, no instantaneous relaxation, wall drag and gravity field
are included in this scheme. Eventually, the proposed numerical scheme is validated with several classi-
cal benchmark tests. The calculation results show that the proposed numerical scheme is accurate and
robust in solving two-phase flows.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In many industrial applications especially in the nuclear plant
system, two-fluid (two-phase) flows exist widely and are the most
important phenomenon. Accurate analysis of two-fluid flows is a
subject of intense current interest and of great importance in
research topics. There are many important models in literature
for describing two-phase flows such as the homogeneous equilib-
rium model, the drift flux model and the two-fluid model.

The two-fluid six-equation model treating each phase as a sep-
arate fluid is assumed to have different velocity for each phase in
the sense that this model is the most complete approximation
for the two fluid flow. So current main reactor thermal-
hydraulics analysis codes such as RALAP5, ATHLET, APROS, TRACE,
TRAC, CATHENA and CATHARE, are all based on such six-equation
model. However, due to an equilibrium pressure assumption, such
model has been proved to be ill posed, which means that the initial
value problem with the two-fluid model equation system is non-
hyperbolic and has imaginary characteristic eigenvalues, leading
to the wrong wave dynamic and numerical unphysical oscillations.

In order to overcome the ill-posed issue of two-fluid single-
pressure model, there are three important ideas: implementation
of the interfacial pressure term (Emonot et al., 2011), implementa-

tion of the virtual mass force term (Sloan et al., 1992) and applica-
tion of the two-pressure model. The interfacial pressure
differential term and the virtual mass force differential term are
added into phasic momentum equations to restore the hyperbolic-
ity. The present authors investigated the ill-posed characteristic
and analyzed ill-posed regions of the two-fluid single-pressure
model and the effect of the virtual mass force and the interfacial
pressure on improving the ill-posedness (Chao et al., 2016). The
results show that the appropriate virtual mass force and the appro-
priate interfacial pressure can well improve the ill-posedness of
the six-equation model, and the appropriate combination of them
can significantly improve the ill-posedness for most conditions of
practical interest in reactor safety analyses. However such two-
fluid six-equation single-pressure model cannot completely avoid
the ill-posedness with the appropriate virtual mass force and the
appropriate interfacial pressure, only the two-fluid two-pressure
model in which each phase is assumed to have its own pressure,
is a well-posed model in all situations.

Many researchers (Abgrall and Saurel, 2003; Banerjee and Chan,
1980; Berry et al., 2010; Chang and Liou, 2005; Chen et al., 1996;
Chinnayya et al., 2004; Chung et al., 2001; Drew, 1983; Hancox
et al., 1980; Hicks, 1981; Jin and Ishii, 2000; Lim et al., 2003;
Long, 1956; Nguyen, 1983; Passman et al., 1983; PI et al., 2008;
Ramshaw and Trapp, 1978; Ransom and Hicks, 1984, 1988;
Ransom and Scofield, 1976; Rousseau and Ferch, 1979; Saurel,
1999; Saurel and Abgrall, 1999; Saurel and Gallouet, 1998) carried
out the study of such two-pressure model due to the well-posed
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advantage since 1976. Three two-pressure models are usually
applied in the literature. One of them is a two-fluid two-pressure
model with the surface tension (Chung et al., 2001; Ramshaw
and Trapp, 1978). Furthermore, for stratified flows, slightly differ-
ent pressures with the effect of the gravitational force are consid-
ered in the two-fluid two-pressure model (Banerjee and Chan,
1980; Hancox et al., 1980; Long, 1956; Rousseau and Ferch,
1979). This model is hyperbolic with the help of the gravity force.
However, while the gravitational field vanishes, this two-pressure
model will be reduced to a single-pressure model. All the research-
ers for the above two two-pressure models tried to gain the well-
posed two-pressure model through algebraic means which seemed
to be some limited successes and missing some key information for
two-fluid flows. Last but not least, the most important two-
pressure model is the two-fluid seven-equation model to which
much attention has been devoted (Baer and Nunziato, 1986;
Berry et al., 2010; Chen et al., 1996; Chinnayya et al., 2004;
Hicks, 1981; Jin and Ishii, 2000; Lim et al., 2003; Nguyen, 1983;
Passman et al., 1983; PI et al., 2008; Ransom and Hicks, 1984,
1988; Ransom and Scofield, 1976; Saurel, 1999; Saurel and
Abgrall, 1999; Saurel and Gallouet, 1998). Such seven-equation
model consists of six conservation partial differential equations
(two mass equations, two momentum equations, two energy equa-
tions) and a volume fraction transport equation. With the seventh
volume fraction transport equation, such seven-equation model
admits seven real eigenvalues and is unconditionally hyperbolic
(well-posed) in the sense of Hadamard (2014), Toro (2013). This
seven-equation model will be studied in this paper.

In the last few decades, a volume of work has been conducted
on the numerical computation of this seven-equation two-
pressure model. There are three important ideas: finite volume
method, finite element method and discrete equation method
(DEM). Liang et al. (2014) presented the operator splitting
approach to decompose the seven-equation model into the hyper-
bolic operator and the relaxation operators. They used Godunov
scheme and the HLLC flux to gain the numerical scheme for solving
such seven-equation model. But the relaxation parts were solved
by the instantaneous relaxation procedures which meant that the
relaxation coefficients were infinite. And the interfacial heat/mass
transfer were ignored in his scheme. Zein et al. (2010) imple-
mented the heat and mass transfer to model phase transitions.
He also used the splitting approach and Godunov-type discretiza-
tion to obtain the solution of this two-pressure model. Both the
velocity and the pressure however were assumed to be in the
instantaneous equilibrium too. Gallouët et al. (2004) proposed no
instantaneous local equilibrium between phases to compute the
seven-equation model which resulted in the different pressure
and the velocity for each phase. Two finite volume methods based
on Rusanov scheme and Godunov scheme were presented to solve
such two-pressure model. The source terms such as relaxation
terms, the phase change and gravity were calculated by a fractional
step approach in his scheme. Ambroso et al. (2012) constructed a
new approximate Riemann solver for the numerical approximation
of the solutions of the seven-equation model. The interfacial drag
force, gravity field and bounded relaxation pressure term were
included in his numerical solver. Berry et al. (2010) and Abgrall

Nomenclature

Symbol
A the cross-sectional area of the pipeline (m2)
Aint the interfacial area between two phases per unit volume

(m�1)
CiD the interfacial drag coefficient between two phases
ck the phase k sound velocity (m�s�1)
D the hydraulic diameter (m)
Fwall;gas wall frictional force acting on gas phase (N�m�1)
Fwall;lquid wall frictional force acting liquid phase (N�m�1)
Fliquid;gas interfacial drag between two phases (N�m�1)
f wall;k the wall friction coefficient for phase k
gx the gravity acceleration in the direction of flow (m�s�2)
Hig interface-to-gas convective heat transfer coefficient per

unit volume (W�m�3�K�1)
hig convective heat transfer coefficient between the inter-

face and the gas phase (W�m�2�K�1)
hif the interface-to-liquid convective heat transfer coeffi-

cient (W�m�2�K�1)
Hif interface-to-liquid convective heat transfer coefficient

per unit volume (W�m�3�K�1)
h�g the gas specific enthalpy evaluated at the interfacial

mass transfer condition (J�kg�1)
h�f the liquid specific enthalpy evaluated at the interfacial

mass transfer condition (J�kg�1)
Pg gas pressure (Pa)
Pf liquid pressure (Pa)
Pint interfacial pressure (Pa)
Qig interface-to-gas phase heat transfer per unit volume

(W�m�3)
Qif interface-to-liquid phase heat transfer per unit volume

(W�m�3)
Tk temperature for phase k (K)

Ts the saturation temperature under the interfacial
pressure Pint (K)

Ug vapour/gas specific internal energy (J�kg�1)
Uf liquid specific internal energy (J�kg�1)
v int the interfacial velocity (m�s�1)
vg gas velocity (m�s�1)
v f liquid velocity (m�s�1)
VL volume of the control volume L (m3)
Zk the phase k acoustic impedance (kg�m�2�s�1)
ag gas volume fraction
af liquid volume fraction
qg gas density (kg�m�3)
qf liquid density (kg�m�3)
qint the interfacial density corresponds to the liquid

saturated density with Pint (kg�m�3)
qc the continuous phase density (kg�m�3)
Cg the net gas-liquid mass transfer per unit volume

(kg�m�3�s�1)
l the pressure relaxation coefficient function (Pa�1�s�1)
sP the pressure relaxation time (s)
Dx the length of the control volume (m)

Subscript
g gas phase
f liquid phase
int phasic interface
k gas phase ðgÞ or liquid phase ðf Þ
initial initial condition

Acronyms
NUSOL Nuclear Safety and Operation Laboratory, Xian Jiaotong

University
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